Slick Sheet: Project
Texas A&M will focus on the design, fabrication, and testing of a lightweight and ultra-efficient electric powertrain for aircraft propulsion to reduce the energy costs and emissions of aviation.

Slick Sheet: Project
Honeywell Aerospace and the University of Maryland propose to develop a novel high-voltage 500 kW advanced electric propulsion system (AEPS) with a high efficiency and a high-power density. The system will provide direct drive to the propulsive device without using a torque amplifier for low weight, cost, and volume, and high reliability. The major components, the electric rotating machine (motor) and the motor drive (power and control electronics), will be heavily integrated for better performance, sharing a common chassis and cooling system.

Press Releases
The U.S. Department of Energy today announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH) programs.

Blog Posts
by Dr. David Babson We live in a carbon-based economy. From the fuels that power our trains, planes, and automobiles to the materials used in our earbuds and iPhone cases, carbon is a critical backbone of our modern economy. Despite our need to actively mitigate and remove carbon and other greenhouse gases (GHGs) from our atmosphere, our future economy will not be a low-carbon economy that emphasizes incremental GHG reductions as much as it will be a new carbon economy: one that removes, efficiently uses, and sequesters more carbon than it emits.

Slick Sheet: Project
Celadyne Technologies will develop an innovative elevated temperature proton conducting ionomer material. The team improves upon existing technology relying on acid-base chemistry in favor of an approach driven by defect chemistry and interfacial nanoionic interactions. The technology could improve efficiency in fuel cells and electrolyzers and reduce CO2 emissions.

Slick Sheet: Project
The Georgia Tech Research Corporation (GTRC) will develop a new approach to internally cool permanent magnet motors. The technology could dramatically improve electric motors’ power density and reduce system size and weight. To do so, the team will integrate motor and drive electronics into a unique system packaging incorporating an embedded advanced thermal management system. They will also develop wide bandgap power electronics packaging to enable high power density operations at higher temperature.

Slick Sheet: Project
Achates Power will develop an opposed-piston engine suitable for hybrid electric vehicle applications. The team will use a unique gasoline compression ignition design that minimizes energy losses (e.g., heat transfer) typical in conventional internal combustion engines. A motor-generator integrated on each engine crankshaft will provide independent control to each piston and eliminate all torque transmitted across the crankshaft connection, thus reducing engine size, mass, cost, friction, and noise.

Slick Sheet: Project
Pinnacle Engines will develop a highly efficient hybrid electric engine that, if successful, will significantly reduce petroleum consumption and carbon dioxide emissions in the U.S. Adding a unique electric powertrain to Pinnacle’s four-stroke, spark-ignited, opposed-piston sleeve-valve engine technology enables a fundamental leap forward in fuel efficiency. Electric motor-generators on each crankshaft will improve engine efficiency by modifying and optimizing the piston motion and resulting combustion process.

Slick Sheet: Project
Advanced Magnet Lab (AML) is developing a reliable, contact-free current transfer mechanism from a stationary to a rotating electrode to allow direct current (DC) electrical machines, motors, and generators to achieve unprecedented power and torque density. This technology, a reimagining of the first electric “homopolar” motor invented by Michael Faraday, would provide current transfer without the need for the costly sliding contacts, brushes, and liquids that have limited DC electrical engine efficiency and lifetime.

Slick Sheet: Project
Lawrence Berkeley National Laboratory (LBNL) is developing a metal-supported SOFC (MS-SOFC) stack that produces electricity from an ethanol-water blend at high efficiency and energy density. This technology will enable light- to medium-duty hybrid passenger EVs to operate at a long range, with higher efficiency than gasoline vehicles and lower greenhouse gas (GHG) emissions than current vehicles.