Slick Sheet: Project
General Electric (GE) Power & Water is developing fabric-based wind turbine blades that could significantly reduce the production costs and weight of the blades. Conventional wind turbines use rigid fiberglass blades that are difficult to manufacture and transport. GE will use tensioned fabric uniquely wrapped around a spaceframe blade structure, a truss-like, lightweight rigid structure, replacing current clam shell wind blades design. The blade structure will be entirely altered, allowing for easy access and repair to the fabric while maintaining conventional wind turbine performance.

Slick Sheet: Project
eNova is developing a gas compressor powered by waste heat from the exhaust of a gas turbine. A conventional gas turbine facility releases the exhaust heat produced during operation into the air—this heat is a waste by-product that can be used to improve power generation system efficiency. eNova’s gas compressor converts the exhaust waste heat from the simple cycle gas turbine to compressed air for injection into the turbine, thereby lessening the burden on the turbine’s air compressor.

Slick Sheet: Project
Bio2Electric is developing a small-scale reactor that converts natural gas into a feedstock for industrial chemicals or liquid fuels. Conventional, large-scale gas-to-liquid reactors are expensive and not easily scaled down. Bio2Electric’s reactor relies on a chemical conversion and fuel cell technology resulting in fuel cells that create a valuable feedstock, as well as electricity. In addition, the reactor relies on innovations in material science by combining materials that have not been used together before, thereby altering the desired output of the fuel cell.

Slick Sheet: Project
Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste—or “kerf loss”—much like how sawdust is created when sawing wood.

Slick Sheet: Project
RamGoss is using innovative device designs and high-performance materials to develop utility-scale electronic switches that would significantly outperform today’s state-of-the-art devices. Switches are the fundamental building blocks of electronic devices, controlling the electrical energy that flows around an electrical circuit. Today’s best electronic switches for large power applications are bulky and inefficient, which leads to higher cost and wasted power. RamGoss is optimizing new, low-cost materials and developing a new, completely different switch designs.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) is developing a solar thermoelectric generator to directly convert heat from concentrated sunlight to electricity. Thermoelectric devices can directly convert heat to electricity, yet due to cost and efficiency limitations they have not been viewed as a viable large-scale energy conversion technology. However, new thermoelectric materials have dramatically increased the efficiency of direct heat-to-electricity conversion. NREL is using these innovative materials to develop a new solar thermoelectric generator.

Slick Sheet: Project
Alveo Energy is developing a grid-scale storage battery using Prussian Blue dye as the active material within the battery. Prussian Blue is most commonly known for its application in blueprint documents, but it can also hold electric charge. Though it provides only modest energy density, Prussian Blue is so readily available and inexpensive that it could provide a cost-effective and sustainable storage solution for years to come.

Slick Sheet: Project
Case Western Reserve University is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today’s cost.

Slick Sheet: Project
Colorado State University (CSU) is developing technology to rapidly introduce novel traits into crops that currently cannot be readily engineered. Presently, a limited number of crops can be engineered, and the processes are not standardized – restricting the agricultural sources for engineered biofuel production. More—and more diverse—biofuel crops could substantially improve the efficiency, time scale, and geographic range of biofuel production.

Slick Sheet: Project
Ceramatec is developing a small-scale reactor to convert natural gas into benzene—a feedstock for industrial chemicals or liquid fuels. Natural gas as a byproduct is highly abundant, readily available, and inexpensive. Ceramatec’s reactor will use a one-step chemical conversion process to convert natural gas into benzene. This one-step process is highly efficient and prevents the build-up of solid residue that can occur when gas is processed. The benzene that is produced can be used as a starting material for nylons, polycarbonates, polystyrene, epoxy resins, and as a component of gasoline.