Slick Sheet: Project
Foundation Alloy Technology Explorations will develop a new class of alloys specifically engineered for powder metallurgy-based processing. These new alloys would be engineered at the atomic level for improved properties and for potential applications in critical reactor components. Foundation Alloy’s integration of new material design with part production could enable rapid delivery times, lower costs, and more consistent part quality.

Slick Sheet: Project
Perseus Materials will develop a new mode of composite manufacturing for wind turbine blades that could rapidly replace vacuum-assisted resin transfer molding as the dominant blade manufacturing process. Perseus’s unique additive manufacturing method—known as variable cross-sectional molding—could significantly reduce labor costs, cycle times, and factory footprints for blade manufacturers at the same output levels.

Slick Sheet: Project
Calion Technologies will develop an air source heat pump steam generator that could seamlessly replace natural gas boilers for industrial processes and introduce heat pumps to a new swath of customers. Calion Technologies’ unique device would harness ionocaloric heat pumping technology to generate steam at very high temperatures compared with current heat pumps and accelerate the decarbonization of industrial heating, which accounts for 9% U.S. greenhouse gas emissions.

Slick Sheet: Project
Travertine will develop an innovative process that combines strong acid-enhanced weathering and critical metal concentration and recovery in ultramafic mine tailings with an electrolytic process for sulfuric acid recycling and base production. The process will maximize the release of carbon dioxide (CO2) reactive minerals and residual critical elements from mine tailings, while minimizing waste. Carbon dioxide will be captured from air and permanently sequestered as inert carbonate minerals. Leached critical elements will be recovered as oxides.

Slick Sheet: Project
Phoenix Tailings’ CO2 GONE process uses and recycles CO2 to extract energy-relevant minerals, primarily nickel (Ni) and magnesium (Mg), from iron- and aluminum-rich ore through carbonation with CO2. Using CO2 with high pressures, temperatures, and mixing breaks down the rock structure and enables greater extraction of energy-relevant elements like Ni and Mg, which are then converted to metal carbonates (NiCO3, MgCO3).

Slick Sheet: Project
The University of Kentucky’s proposed technology will use CO₂ emitted at or near operating mines and processing operations to reduce the energy consumed during grinding by more than 50% while improving the recovery of critical energy relevant minerals by 20% or greater. In this approach, CO2 will be mixed with ore containing the valuable minerals, especially copper (Cu) and rare earth elements, to improve grinding and separation efficiency. Biological fixation of CO2 will also be studied and employed in producing acid to recover Cu from low grade feedstocks.

Slick Sheet: Project
The University of Texas at Arlington will develop two technologies to produce lithium (Li) and nickel (Ni) from CO2-reactive minerals and rocks that contain calcium (Ca) and magnesium (Mg), while sequestering CO2 in the form of carbonate solids (calcium carbonate, or CaCO3; magnesium carbonate, or MgCO3; and variants thereof). The technologies, acoustic stimulation and electrolytic proton production, use electricity to liberate valuable metal ions from the surrounding mineral matrix at sub-boiling temperatures (~20-80°C).

Slick Sheet: Project
The University of Texas, Austin, will conduct an in-situ injection of CO2 dissolved in water to permanently sequester CO2 via carbon-negative reactions (carbon mineralization), chemically fracture the rock via reaction-driven cracking before mining to reduce extraction and comminution energy by at least 50%, replace the CO2-reactive rock waste with carbonate to reduce energy needed for separation, improve concentrate grade, and increase ore recovery, and expand the lifespan of the mine as a CO2 sink once the ore is exhausted.

Slick Sheet: Project
Virginia Polytechnic Institute and State University (Virginia Tech) will develop an innovative carbon mineralization/metal extraction technology (CMME) that enables the recovery of energy-relevant elements during direct and indirect carbon mineralization processes. Virginia Tech will introduce an organic phase during the direct carbon mineralization process and in the mineral dissolution step of indirect carbon mineralization process. Energy-relevant elements are purified and separated through advanced separation technologies.

Slick Sheet: Project
Boeing Research & Technology (BR&T) will develop a multidisciplinary topology optimization (MDTO) algorithm that couples fluid dynamics, heat transfer, and structural analysis to design, manufacture via additive manufacturing techniques, and demonstrate a high-performance, extreme environment heat exchanger (EEHX) capable of operating at up to 900°C with a 17 MPa pressure differential with supercritical carbon dioxide.