Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) will develop a cost-effective, easy-to-fabricate bio-based insulation from celium (a cellulose-mycelium composite) to reduce the embodied and operational CO2 footprint of new and retrofitted residential housing. NREL will create celium by valorizing cellulose with mycelium, the root network of fungi, to create a new class of high-performing, carbon-capturing and -storing textiles, foams, and composites. The team will fabricate a net CO2 negative celium material with high-performance thermal, acoustic, and antimicrobial properties.

Slick Sheet: Project
Purdue University will harness microbial activities to reinforce the load-bearing structure of wood to the strength of steel, increase its fire resistance and lifetime, and lower technological barriers to manufacturing uniform wood composite materials. The “living wood” has a self-healing capability that breathes in CO2 and produces biomaterials to fill up and bond possible cracks. The process is intrinsically scalable and cost-effective due to the bulk treatment of wood and exponential manufacturing of microbes.

Slick Sheet: Project
The University of Colorado Boulder will manufacture and commercialize a net-CO2-storing portland limestone cement using biogenic limestone (CaCO3) produced via photosynthesis that will store more than 275 kgCO2 and cost less than $100 per ton of cement. Most cement-related CO2 emissions are caused by heating CaCO3 to produce calcium oxide (quicklime), which releases CO2 in the process. The proposed technology will produce biogenic CaCO3 using calcifying microalgae that sequester and store CO2 in mineral form through biological direct air capture via photosynthesis and calcification.

Slick Sheet: Project
Rio Tinto Services will collaborate with Columbia University, Pacific Northwest National Laboratory, Talon Nickel, Carbfix, and Advantek Waste Management Solutions to develop innovative technologies to potentially sequester CO2 based on the characterization, determination of reaction kinetics, and modeling of the Tamarack Nickel Project’s bowl-shaped ultramafic intrusion. This sequestration would be achieved via the conversion of CO2 into solid rock.

Slick Sheet: Project
The University of Wisconsin-Madison will produce carbon-negative concrete building components using cementitious materials generated by a carbon mineralization-based direct air capture (DAC) process. The DAC process uses a novel aqueous carbonation cycle to capture CO2 from the air at low cost. Simultaneously, the process upcycles industrial mineral wastes as cementitious materials by enhancing their pozzolanic reactivity (i.e. ability to form minerals that contribute to strength).

Slick Sheet: Project
The technology proposed by the Georgia Institute of Technology avoids surfactant use to generate a stable foam by instead relying on hydrodynamic means to generate an unstable high-density foam to disperse the fiber into. The fiber mat is formed in a fast dynamic process before loss of integrity of the multi-phase fiber-air bubble mixture. The team will develop a next-generation paper manufacturing system that includes a novel microbubble generator integrated with a next generation headbox that can scale up for commercial production.

Slick Sheet: Project
Gencores enables technology for ultra-light vehicles to decarbonize transportation. Herein they demonstrate a scalable and digital production of low-cost and high-performance hybrid Polymethacrylimide (PMI) foam cores for sandwich composite constructions. Sandwich composites feature a foam core wrapped in fiber-reinforced skins and offer a 40-75% weight reduction potential compared with traditional metal alternatives. Current PMI foam cores are costly and time-consuming to produce in complex shapes.

Slick Sheet: Project
The University of Tennessee-Knoxville (UTK) will develop higher performance, carbon-negative, and eco-friendly lignin polyurethane (PU) foams as a building insulation material via non-isocyanate synthesis. Non-isocyanate PU via polyaddition of cyclic carbonates and amines is non-toxic and non-moisture sensitive. Lignin is inherently hydrophobic, antibacterial, and fire-resistant, which are essential properties of insulation materials. Lignin’s propensity to char instead of ignite is advantageous but insufficient to address modern anti-flammability requirements.

Slick Sheet: Project
Metalx Biocycle aims to enable the recycling of critical metals from electronic waste (e-waste) at a cost that is competitive against extraction via conventional mining. Most e-waste ends up in landfills where it causes serious environmental issues; and conventional extraction methods rely on inefficient, expensive, energyintensive processes. The Metalx Biocycle team will leverage biological processes to efficiently extract, concentrate, and purify critical metals and rare earth elements from e-waste and low-grade mineral ores.

Slick Sheet: Project
The University of Michigan and Southwest Research Institute will use state-of-the-art methods to eliminate methane emissions from oil and gas (O&G) flares, vents, and other equipment. The approach will quantitatively characterize high- and low-volume methane sources at an actual O&G field site and demonstrate Systems of Advanced Burners for Reduction of Emissions (SABRE) technology for high-efficiency (> 99.5%) methane conversion of the high- and low-volume sources of methane. The SABRE approach leverages site resources and customizes flare technology to local equipment needs.