Slick Sheet: Project
The University of Maryland (UMD) is developing ceramic materials and processing methods to enable high-power, solid-state, lithium-ion batteries for use in EVs. Conventional lithium-ion batteries used in most EVs contain liquids that necessitate the use of heavy, protective components. By contrast, UMD’s technology uses no liquids and offers greater abuse tolerance and reducing weight. This reduced weight leads to improved EV efficiency for greater driving range.

Slick Sheet: Project
The University of Maryland (UMD) is using water-based magnesium and hydrogen chemistries to improve the energy density and reduce the cost of EV batteries. The lithium-ion batteries typically used in most EVs today require heavy components to protect the battery and ensure safety. Water-based batteries are an inherently safer alternative, but can be larger and heavier compared to lithium-ion batteries, making them inefficient for use in EVs.

Slick Sheet: Project
The University of Houston is developing a battery with a new water-based, lithium-ion chemistry that makes use of sustainable, low-cost, and high-energy organic materials. Conventional lithium-ion batteries include volatile materials and chemistries that necessitate considerable packaging to ensure safety. This additional packaging results in a heavier, bulkier battery and limits where the battery can be placed within the vehicle. In contrast, the University of Houston’s organic materials are readily available, safe, and non-volatile, making them ideal for use in battery construction.

Slick Sheet: Project
Solid Power is developing a new low-cost, all-solid-state battery for EVs with greater energy storage capacity and a lighter, safer design compared to lithium-ion batteries. Conventional batteries are expensive, perform poorly at high temperatures and require heavy protective components to ensure safety. In contrast, Solid Power’s liquid-free cells store more energy for their size and weight, but use non-flammable and non-volatile materials that are stable high temperatures. This results in improved safety in the event of a collision or fire.

Slick Sheet: Project
Alkaline batteries are used in a variety of electronic devices today because of their ability to hold considerable energy, for a long time, at a low cost. In order to create alkaline batteries suitable for EVs, Princeton University will use its expertise in alkaline battery systems examine a variety of suitable positive and negative electrode chemistries. Princeton will then select and experiment with those chemistries that show promise, using computational models to better understand their potential cycle life and storage capacities.

Slick Sheet: Project
Oak Ridge National Laboratory (ORNL) is developing an abuse-tolerant EV battery. Abuse tolerance is a key factor for EV batteries. Robust batteries allow for a broader range of battery chemistries, including low-cost chemistries that could improve driving range and enable cost parity with gas-powered vehicles. ORNL’s design would improve battery abuse tolerance at the cell level, thereby reducing the need for heavy protective battery housing.

Slick Sheet: Project
The University of California, Los Angeles (UCLA) is developing a new high-power, long-life, acid-based battery that addresses the cycle life issues associated with lead-acid batteries today. Lead-acid batteries are used extensively in gasoline-powered vehicles and even modern electric vehicles for initial ignition, but inevitably wear out after a limited number of complete discharge cycles. To solve this problem, UCLA will incorporate novel, newly-discovered material that allows the battery to store a greater electrical charge using a conventional battery design.

Slick Sheet: Project
Cadenza Innovation is developing an innovative system to join and package batteries using a wide range of battery chemistries. Today’s battery packs require heavy and bulky packaging that limits where they can be positioned within a vehicle. By contrast, Cadenza’s design enables flexible placement of battery packs to absorb and manage impact energy in the event of a collision. Cadenza’s battery will use a novel configuration that allows for double the energy density through the use of a multifunctional pack design.

Slick Sheet: Project
NASA’s Jet Propulsion Laboratory (JPL) is developing a new metal-hydride/air battery. Current electric vehicle batteries use costly components and require packaging and shielding to ensure safety. To address this, JPL’s technology will incorporate safe, inexpensive, and high-capacity materials for both the positive and negative electrodes of the battery as part of a novel design. Additionally, JPL’s design will use a membrane developed to prevent water loss and CO2 entry within the battery.

Slick Sheet: Project
Stanford University is developing an EV battery that can be used as a structural component of the vehicle. Today’s EV battery packs only serve one purpose: electrical energy storage. They do not carry structural loads during operation or absorb impact energy in the event of a collision. Stanford’s new battery design would improve upon existing technologies in four key areas: 1) structural capabilities, 2) damage and state sensing systems, 3) novel battery management and thermal regulation, and 4) high-capacity battery cells.