Slick Sheet: Project
More than 60,000 miles of cast iron and bare steel gas distribution pipelines are still in service. Oak Ridge National Laboratory (ORNL) and its partners will develop a cost-effective and efficient smart structural coating deposition system and advanced high-end technology tools to inspect and rehabilitate gas distribution pipelines.

Slick Sheet: Project
The Wisconsin High-field Axisymmetric Mirror (WHAM) project at the University of Wisconsin-Madison will leverage advances in the stability and confinement of the mirror fusion concept, innovative plasma heating, and high-field superconducting magnets to demonstrate a potentially transformative development path toward a low-cost linear fusion device. Two mirror coils will be constructed using high temperature superconducting material. Hot and high-density target plasmas will be created using high‑frequency electron-cyclotron heating from modern gyrotrons.

Slick Sheet: Project
The current O&M paradigm for operating light-water reactors (LWRs) generally seeks to maximize lifetimes for major structures, systems, and components (SSCs). The consequences are profound as key SSCs can become life-limiting or require costly monitoring, inspection, maintenance, and repair. Unless questioned, the underlying assumption of multi-decadal design life for major plant SSCs could become embedded in the next generation of plants.

Slick Sheet: Project
Molten salt reactors (MSRs) produce radioactive materials when nuclear fuel is dissolved in molten salt at a high temperature and undergoes fission as it flows through the reactor core. MIT will target two technical gaps: (1) fission product release and transport during normal MSR operations, and (2) radioactive dose rates for MSR primary system maintenance due to fuel salt deposition. In MSRs the primary system serves as the first radiological release barrier during normal reactor operation.

Slick Sheet: Project
The Boeing Company will develop a compact, extreme environment heat exchanger (EEHX) for application in supercritical carbon dioxide electric power generation cycles for hypersonic aircraft and land-based distributed power generation. Their metallic heat exchanger will be capable of operation at temperatures and pressures in excess of 1000°C (1832°F) and 80 bar (1160 psi), respectively.

Slick Sheet: Project
The University of Washington will advance the technical viability of a novel method, Imposed-Dynamo Current Drive (IDCD), for sustaining and heating spheromak plasmas as the basis of compact, low-cost fusion power plants. A traditional tokamak fusion reactor has a toroidal confinement area, similar shape to a donut, with a hole in the middle. The spheromak reduces the size of the hole as much as possible, resulting in a spherical plasma shape similar to a cored apple.

Slick Sheet: Project
Sapientai, LLC will form a team under the Data-enabled Fusion Technology (DeFT) project to provide state-of-the-art data-enabled modeling and simulation capabilities to accelerate the development and evaluation of lower-cost fusion concepts. The team will leverage machine learning (ML) and artificial intelligence (AI) capabilities to better understand and use the results of existing experimental data and models to accelerate the development of lower-cost fusion concepts toward higher fusion performance.

Slick Sheet: Project
Fusion requires confining plasmas at extraordinarily high temperatures. One of the most promising ways to heat plasmas to these temperatures is with high-power radio-frequency (RF) waves. Beyond providing heating, RF waves can enable control of the radial current profile in a plasma, which can help improve confinement and control or mitigate plasma instabilities. Complex analytic theory and computer simulations are required to design effective and efficient plasma-heating scenarios, which must be tailored for various fusion concepts.

Slick Sheet: Project
Framatome aims to reduce advanced reactor costs by leveraging advanced diagnostics methods to demonstrate feasible fault detection with an optimized set of sensors; develop reliable automatic fault detection algorithms on wide range of systems; and minimize the resources required to perform fault detection. Framatome will develop two novel digital twins for use with Metroscope, a software package that connects digital twins and their associated fault libraries and monitors them with an algorithm to detect problems early on.

Slick Sheet: Project
Advanced reactors must be designed to be financially competitive with fossil fuel power plants to gain a foothold in future energy markets. The GE Research team aims to reduce operations and maintenance (O&M) costs by moving from a time- to condition-based predictive maintenance framework, using GE Hitachi's BWRX-300 boiling water reactor as the reference design. GE will develop operational, health, and decision predictive maintenance digital twins (PMDTs) to enable continuous monitoring, early warning, diagnostics, and prognostics for the reactor systems.