Slick Sheet: Project
West Virginia University seeks to commercialize alloys and manufacturing processes to improve the overall safety, energy efficiency, and environmental performance of air travel and electricity generation. The team will develop a new class of ultra-high temperature refractory complex concentrated alloys-based composites (RCCC) for high temperature applications such as combustion turbines used in the aerospace and energy industries. The approach is based on a transformative “high-entropy” strategy.

Slick Sheet: Project
The Penn State team is developing a fully open-source toolset for exploring and optimizing Energy Storage and Power (ES&P) systems for rail transportation. The core of the toolset will be an Energy-Longitudinal Train Dynamics (E-LTD) model that represents the train as a complex rolling micro-grid of power sources and sinks, determining the optimal power flow policy for each. The E-LTD will model power demands and calculate greenhouse gas (GHG) emissions and fuel consumption, power, acquisition, operations and support, and infrastructure costs.

Slick Sheet: Project
The aviation industry requires energy-dense, carbon-based fuels, which are difficult to achieve biologically because of low yields and poor carbon conversion efficiency. The University of California, Berkeley, will engineer an approach to reach near 100% carbon conversion efficiency. A single organism can be limited by CO2 loss from core metabolic reactions.

Slick Sheet: Project
LanzaTech will create transformative technology to directly convert CO2 to ethanol at 100% carbon efficiency with technical assistance from the University of Michigan and Oak Ridge National Laboratory. The team will develop a novel biocatalyst that leverages affordable, renewable hydrogen (H2) to capture and fix CO2 directly into ethanol, a biofuel and feedstock for valuable products. The core inputs are carbon-free renewable energy, water, and CO2.

Slick Sheet: Project
The National Renewable Energy Laboratory, the University of Oregon, Genomatica, and DeNora will generate low-cost and low-carbon-intensity fatty acid methyl esters (FAME) feedstock to generate renewable diesel and sustainable jet fuel. The team’s biorefining concept uses electrochemically generated formate as a universal energy carrier to facilitate a carbon-optimized sugar assimilation fermentation to synthesize FAME without release of CO2.

Slick Sheet: Project
The Massachusetts Institute of Technology (MIT) has demonstrated a two-stage system where acetate is produced from CO2 and H2 via acetogenic fermentation in the first stage and then fed to the yeast reactor for converting acetate to lipids or alkanes. MIT proposes to reduce or eliminate CO2 generation during lipid production by (1) engineering an oleaginous yeast with the enzymes necessary to generate reducing equivalents from hydrogen, formic acid, or methanol, and (2) installing a carbon-conserving non-oxidative glycolysis.

Slick Sheet: Project
Invizyne Technologies proposes an electrically powered cell-free enzymatic approach for upgrading ethanol into more useful chemicals. Because carbon for 99% of organic chemicals is petroleum-derived, replacing petroleum carbon with carbon captured from the atmosphere could greatly mitigate carbon emissions. Atmospheric CO2 represents a potentially limitless source of inexpensive carbon, but there are significant challenges to converting captured CO2 into useful chemicals and fuels.

Slick Sheet: Project
QuesTek Innovations will apply computational materials design, additive manufacturing (AM), coating technology, and turbine design/manufacturing to develop a comprehensive solution for a next-generation turbine blade alloy and coating system capable of sustained operation at 1300°C.

Slick Sheet: Project
Advanced Conductor Technologies will develop two-pole, high-temperature, superconducting DC power cables and connectors with a power rating of up to 50 MW to enable twin-aisle aircraft with distributed electric propulsion to reduce carbon emissions. The cables and connectors will contain insulation independent of the cryogenic medium used as coolant and allow an operating voltage of 10 kV. Because they have intrinsic fault current limiting capabilities, the cables can protect the power distribution network from over-currents.

Slick Sheet: Project
ZymoChem will develop carbon- and energy-efficient biocatalysts capable of co-conversion of one-carbon molecules and biomass-derived substrates to a high-volume platform fuel and chemical intermediate. The team will demonstrate a carbon-conserving process decoupling growth and production. Most bioprocesses using microbes and renewable feedstocks to make fuels and chemicals are unprofitable, precluding their adoption on the industrial scale.