Slick Sheet: Project
Brown University is developing a power conversion device to maximize power production and reduce costs to capture energy from flowing water in rivers and tidal basins. Conventional methods to harness energy from these water resources face a number of challenges, including the costs associated with developing customized turbine technology to a specific site. Additionally, sites with sufficient energy exist near coastal habitats which depend on the natural water flow to transport nutrients.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) and Indoor Reality are developing a portable scanning system and the associated software to rapidly generate indoor thermal and physical building maps. This will allow for cost-effective identification of building inefficiencies and recommendation of energy-saving measures. The scanning system is contained in a backpack which an operator would wear while walking through a building along with a handheld scanner.

Slick Sheet: Project
The University of Nevada, Las Vegas (UNLV) is developing a solid-state, non-flammable electrolyte to make today’s Li-Ion vehicle batteries safer. Today’s Li-Ion batteries use a flammable liquid electrolyte—the material responsible for shuttling Li-Ions back and forth across the battery—that can catch fire when overheated or overcharged. UNLV will replace this flammable electrolyte with a fire-resistant material called lithium-rich anti-perovskite.

Slick Sheet: Project
Teledyne Scientific & Imaging is developing a water-based, potassium-ion flow battery for low-cost stationary energy storage. Flow batteries store chemical energy in external tanks instead of within the battery container. This allows for cost-effective scalability because adding storage capacity is as simple as expanding the tank. Teledyne is increasing the energy and power density of their battery by 2-5 times compared to today’s state-of-the-art vanadium flow battery.

Slick Sheet: Project
Tai-Yang Research Company (TYRC) is developing a superconducting cable, which is a key enabling component for a grid-scale magnetic energy storage device. Superconducting magnetic energy storage systems have not established a commercial foothold because of their relatively low energy density and the high cost of the superconducting material. TYRC is coating their cable in yttrium barium copper oxide (YBCO) to increase its energy density.

Slick Sheet: Project
Rensselaer Polytechnic Institute (RPI) is working to develop and demonstrate a new bi-directional transistor switch that would significantly simplify the power conversion process for high-voltage, high-power electronics systems. A transistor switch helps control electricity, converting it from one voltage to another or from an Alternating Current (A/C) to a Direct Current (D/C). High-power systems, including solar and wind plants, usually require multiple switches to convert energy into electricity that can be transmitted through the grid.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) is developing a device to monitor and measure electric power data from the grid’s distribution system. The new instrument—known as a micro-phasor measurement unit (µPMU)—is designed to measure critical parameters such as voltage and phase angle at different locations, and correlate them in time via extremely precise GPS clocks. The amount of phase angle difference provides information about the stability and direction of power flow.

Slick Sheet: Project
Plant Sensory Systems (PSS) is developing an enhanced energy beet that will provide an improved fermentable feedstock. A gene that has been shown to increase biomass and soluble sugars in other crop species will be introduced into beets in order produce higher levels of non-food-grade sugars and use both nutrients and water more efficiently. These engineered beets will have a lower cost of production and increased yield of fermentable sugars to help diversify feedstocks for bioproduction of fuel molecules.

Slick Sheet: Project
Integral Consulting is developing a cost-effective ocean wave buoy system that will accurately measure its own movements as it follows the surface wave motions of the ocean and relay this real-time wave data. Conventional real-time wave measurement buoys are expensive, which limits the ability to deploy large networks of buoys. Data from Integral Consulting’s buoys can be used as input to control strategies of wave energy conversion (WEC) devices and allow these controlled WECs to capture significantly more energy than systems that do not employ control strategies.

Slick Sheet: Project
General Electric (GE) Global Research is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability.