Slick Sheet: Project
The University of Utah is developing a light metal sorting system that can distinguish multiple grades of scrap metal using an adjustable and varying magnetic field. Current sorting technologies based on permanent magnets can only separate light metals from iron-based metals and tend to be inefficient and expensive. The University of Utah’s sorting technology utilizes an adjustable magnetic field rather than a permanent magnet to automate scrap sorting, which could offer increased accuracy, less energy consumption, lower CO2 emissions, and reduced costs.

Slick Sheet: Project
INFINIUM is developing a technology to produce light metals such as aluminum and titanium using an electrochemical cell design that could reduce energy consumption associated with these processes by over 50%. The key component of this innovation lies within the anode assembly used to electrochemically refine these light metals from their ores. While traditional processes use costly graphite anodes that are reacted to produce CO2 during refining, INFINIUM’s anode can use much cheaper fuels such as natural gas, and produce a high-purity oxygen by-product.

Slick Sheet: Project
Case Western Reserve University is developing a specialized electrochemical cell that produces titanium from titanium salts using a series of layered membranes. Conventional titanium production is expensive and inefficient due to the high temperatures and multiple process steps required. The Case Western concept is to reduce the energy required for titanium metal production using an electrochemical reactor with multiple, thin membranes. The multi-membrane concept would limit side reactions and use one third of the energy required by today’s production methods.

Slick Sheet: Project
Materials & Electrochemical Research (MER) is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. MER is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency.

Slick Sheet: Project
Alcoa is designing a new, electrolytic cell that could significantly improve the efficiency and price point of aluminum production. Conventional cells reject a great deal of waste heat, have difficulty adjusting to electricity price changes, and emit significant levels of CO2. Alcoa is addressing these problems by improving electrode design and integrating a heat exchanger into the wall of the cell. Typically, the positive and negative electrodes—or anode and cathode, respectively—within a smelting cell are horizontal.

Slick Sheet: Project
The University of Utah is developing a reactor that dramatically simplifies titanium production compared to conventional processes. Today's production processes are expensive and inefficient because they require several high-energy melting steps to separate titanium from its ores. The University of Utah's reactor utilizes a magnesium hydride solution as a reducing agent to break less expensive titanium ore into its components in a single step. By processing low-grade ore directly, the titanium can be chemically isolated from other impurities.

Slick Sheet: Project
iMetalx is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. iMetalx is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency.

Slick Sheet: Project
BlazeTech is developing advanced sorting software that uses a specialized camera to distinguish multiple grades of light metal scrap by examining how they reflect different wavelengths of light. Existing identification technologies rely on manual sorting of light metals, which can be inaccurate and slow. BlazeTech’s sorting technology would identify scrap metal content based on the way that each light metal appears under BlazeTech’s sorting camera, automating the sorting process and enabling more comprehensive metal recycling.

Slick Sheet: Project
University of Colorado, Boulder (CU-Boulder) is developing a new solar-powered magnesium production reactor with dramatically improved energy efficiency compared to conventional technologies. Today’s magnesium production processes are expensive and require large amounts of electricity. CU-Boulder’s reactor can be heated using either concentrated solar power during the day or by electricity at night. CU-Boulder’s reactor would dramatically reduce CO2 emissions compared to existing technologies at lower cost because it requires less electricity and can be powered using solar energy.

Slick Sheet: Project
Phinix is developing a specialized cell that recovers high-quality magnesium from aluminum-magnesium scrap. Current aluminum refining uses chlorination to separate aluminum from other alloys, which results in a significant amount of salt-contaminated waste. Rather than using the conventional chlorination approach, Phinix’s cell relies on a three-layer electrochemical melting process that has proven successful in purifying primary aluminum.