Slick Sheet: Project
Empower Semiconductor will develop a new architecture for regulating voltage in integrated circuits (IC) like computer microprocessors. Empower’s design will enable faster & more accurate power delivery than today’s power management hardware. As transistors continue to shrink, the number of transistors per chip has increased, resulting in increased computing power. Existing Voltage Regulator ICs (VRICs) have not kept pace and deliver excessive (and wasted) power to these advanced digital ICs.

Slick Sheet: Project
Eaton will develop and validate a wireless-power-based computer server supply that enables distribution of medium voltage (AC or DC) throughout a datacenter and converts it to the 48V DC used by computer servers. Datacenters require multiple voltage conversions steps, reducing the efficiency of power distribution from the grid to the server. The converter will employ commercially available wide-bandgap power devices for both the medium-voltage transmitter circuit and the low-voltage receiver circuit, respectively.

Slick Sheet: Project
The University of Wisconsin-Madison (UW-Madison) and its project team will develop new integrated motor drives (IMDs) using current-source inverters (CSIs). Recent advances in both silicon carbide (SiC) and gallium nitride (GaN) wide-bandgap semiconductor devices make these power switches well-suited for the selected CSI topology that the team plans to integrate into high-efficiency electric motors with spinning permanent magnets.

Slick Sheet: Project
Cree Fayetteville (operating as Wolfspeed, A Cree Company) will team with Ford Motor Company and the University of Michigan-Dearborn to build a power converter for DC fast chargers for electric vehicles using a solid-state transformer based on silicon carbide. The team will construct a single-phase 500 kW building block for a DC fast charger that is at least four times the power density of todays installed units.

Slick Sheet: Project
The University of Illinois, Chicago (UIC) will develop a new high-power converter circuit architecture for fast charging of electric vehicles (EV). Their wide-bandgap universal battery supercharger (UBS) is designed using a unique AC/DC converter system. Fast-switching silicon carbide (SiC) field-effect transistors (FETs) with integrated gate-drivers are used to achieve the targeted compactness. A novel hybrid-modulation method is used to switch the SiC-FETs to reduce the semiconductor power losses and improve the efficiency.

Slick Sheet: Project
The University of Colorado, Boulder (CU-Bolder) and its project team will develop new composite SiC power converter technology that achieves high power and voltage conversion (250 VDC to 1200 VDC) in a smaller package than ever achieved due largely to improved switching dynamics and reduced need for large passive energy storage components. Also, utilizing higher system voltage in vehicular power systems has been proven to enable vehicle manufacturers to use thinner and lighter wires and improve vehicle powertrain system efficiency.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) and its project team will develop an on-board electric vehicle charger using a gallium nitride (GaN) based converter to improve power density and conversion efficiency. Conventional power converter topologies which primarily use magnetics (i.e. inductors and transformers) for energy transfer suffer from a tradeoff between efficiency and size. In this project, the team proposes a shift in traditional charger design to develop a bidirectional converter dominated by capacitor-based energy transfer.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) and its project team will develop an extremely efficient AC-to-DC converter based on gallium nitride (GaN) devices for use in datacenters. Datacenters are the backbones of modern information technology and their physical size and power consumption is rapidly growing. Converters for datacenters need to be power dense and efficient to maximize the computing power per unit volume and to reduce operating costs and environmental impact.

Slick Sheet: Project
The University of Arkansas and its project team will develop a power inverter system for use in the electrification of construction equipment. Heavy equipment providers are increasingly investing in electrification capability to perform work in harsh environments. As with all electrified systems, size, weight and power considerations must be met by these systems. The team's approach is to utilize the advantages of wide bandgap semiconductors not only in the converter elements themselves, but also in the converter’s gate driver as well.

Slick Sheet: Project
United Technologies Research Center (UTRC) will develop a silicon carbide-based, single stage, 15 kW direct AC-to-AC (fixed frequency AC to variable frequency AC) power converter that avoids the need for an intermediate conversion to DC or energy storage circuit elements. The team seeks to build a device that weighs about half as much as available converters while demonstrating scalability for a broad power range (from kW to tens of MW) and achieving conversion efficiencies greater than 99%.