Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) team will jointly develop an integrated process to produce butanol directly from air-captured carbon dioxide (CO2). Butanol has a higher energy density than ethanol and is a precursor to jet fuel. UC Berkeley’s system takes three main inputs: ambient air, water, and a sustainable energy source, and produces butanol.

Slick Sheet: Project
Linde Gas aims to develop a system for natural gas-fired power plants using post-combustion carbon capture and hydrogen technologies. This unique process produces and stores hydrogen when it is not profitable for the power plant with carbon capture to export electricity to the grid. The process then uses that stored hydrogen to offset natural gas fuel consumption when electricity prices are high.

Slick Sheet: Project
The University of Wisconsin-Madison aims to develop an integrated process to convert CO2 and renewable H2 into molecules that can be blended with liquid transportation fuels or used in various chemical applications. The project eliminates CO2 release in the production of chemicals by integrating the unique and efficient capabilities of two microorganisms. The first produces acetate from CO2 and H2 while the second upgrades acetate to higher-value chemical products. The CO2 released in the upgrading process is recycled internally to produce more acetate.

Slick Sheet: Project
The Ohio State University is designing, modeling, and constructing synthetic microbial groups consisting of three bacterial species. Lactic acid bacterium, a carboxydotrophic acetogen, and a solventogenic clostridium are grown in a consortium that produces n-butanol, an advanced biofuel and industrial chemical used in plastics, polymers, lubricants, brake fluids, and synthetic rubber. The bacteria will react with lignocellulose sugars (mainly glucose and xylose) and formate (from CO2 produced by electrochemical reduction) in a biorefinery.

Slick Sheet: Project
Oak Ridge National Laboratory, with project co-funder National Energy Technology Laboratory, will conduct a Geographical Information System (GIS) spatial analysis to identify locations that (1) are within geological saline basins with potential for CO2 injection, (2) are close to existing NG pipelines or NG users for potential blending of RNG with NG, and (3) meet site-specific suitability criteria (e.g. slope, population density, and exclusion of protected lands, landslide and flood hazard, and EPA non-attainment areas).

Slick Sheet: Project
One promising method for reducing atmospheric CO2 is a repeated enhanced weathering process, in which a natural reaction between CO2 in air and magnesium- and/or calcium-rich minerals is accelerated to form a solid carbonate that can be processed to regenerate the minerals for reuse and create a captured CO2 stream. The proposed technology combines enhanced weathering innovations with an engineered system that passively exposes these reactive minerals to the air.

Slick Sheet: Project
The Harvard University team will draw from efficient infrastructures for cheap sugar supply, maturing gas fermentation technology, and sophisticated strategies to engineer fatty acid metabolism. Current bioproduction platforms are limited regarding to carbon efficiency, product versatility or productivity. These platforms have left legacies that will aid Harvard in developing the next generation of carbon-efficient bioproduction, however.

Slick Sheet: Project
Rutgers University (RU) aims to produce concrete from incinerator ash and concrete rubble (CR). RU will use its proprietary low-cost technology to create a low carbon footprint concrete. Assuming only electricity for crushing and milling, CR contributes a 5% carbon footprint to an adaptive cement that can be cured one of two different ways. Curing with CO2 will create a -5% carbon-negative carbonate-cement-concrete. Curing with water will create a +6% carbon footprint hydraulic concrete. Both sustainable technologies exact a reduction of 90+% for CO2 emissions and 100% for fossil fuel use.

Slick Sheet: Project
The aviation industry requires energy-dense, carbon-based fuels, which are difficult to achieve biologically because of low yields and poor carbon conversion efficiency. The University of California, Berkeley, will engineer an approach to reach near 100% carbon conversion efficiency. A single organism can be limited by CO2 loss from core metabolic reactions.

Slick Sheet: Project
LanzaTech will create transformative technology to directly convert CO2 to ethanol at 100% carbon efficiency with technical assistance from the University of Michigan and Oak Ridge National Laboratory. The team will develop a novel biocatalyst that leverages affordable, renewable hydrogen (H2) to capture and fix CO2 directly into ethanol, a biofuel and feedstock for valuable products. The core inputs are carbon-free renewable energy, water, and CO2.