Slick Sheet: Project
University of Tennessee (UT), along with their partners, will develop a new type of microgrid design, along with its corresponding controller. Like most other microgrids, it will have solar PV-based distributed generation and be capable of grid-connected or disconnected (islanded) operations. Unlike other microgrids, this design will incorporate smart grid capabilities including intelligent switches and high-speed communication links. The included controller will accommodate and utilize these smart grid features for enhanced performance and reduced costs.

Slick Sheet: Project
The team led by Newton Energy Group will lead the Gas-Electric Co-Optimization (GECO) project to improve coordination of wholesale natural gas and power operators both at the physical and market levels. The team's approach uses mathematical methods and computational techniques that have revolutionized the field of optimal control. These methods will be applied to natural gas pipeline networks, and the final deliverable will consist of three major components. First, they will model and optimize intra-day pipeline operations represented by realistic models of gas network flow.

Slick Sheet: Project
Vanderbilt University will develop a foundation platform for developing and deploying robust, reliable, effective and secure software applications for the Smart Grid. The Resilient Information Architecture Platform for the Smart Grid (RIAPS) provides core services for building effective and powerful smart grid applications. It offers unique services for real-time data dissemination, fault tolerance, and coordination across apps distributed over the network.

Slick Sheet: Project
ProsumerGrid, with its partners, will develop a highly specialized and interactive software tool capable of simulating the operation of emerging DSOs at the physical, information, and market levels while capturing the interactions among the various market participants. The software will offer electricity industry analysts, engineers, economists, and policy makers a "design studio environment" in which various propositions of participant roles, market rules, business processes, and services exchange can be studied to achieve a robust DSO design.

Slick Sheet: Project
HexaTech is developing new semiconductors for electrical switches that will more efficiently control the flow of electricity across high-voltage electrical lines. A switch helps control electricity: switching it on and off, converting it from one voltage to another, and converting it from an Alternating Current (A/C) to a Direct Current (D/C) and back. Most switches today use silicon or silicon-based semiconductors, which are not able to handle high voltages, fast switching speeds, or high operating temperatures.

Slick Sheet: Project
Rensselaer Polytechnic Institute (RPI) is working to develop and demonstrate a new bi-directional transistor switch that would significantly simplify the power conversion process for high-voltage, high-power electronics systems. A transistor switch helps control electricity, converting it from one voltage to another or from an Alternating Current (A/C) to a Direct Current (D/C). High-power systems, including solar and wind plants, usually require multiple switches to convert energy into electricity that can be transmitted through the grid.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) is developing a device to monitor and measure electric power data from the grid’s distribution system. The new instrument—known as a micro-phasor measurement unit (µPMU)—is designed to measure critical parameters such as voltage and phase angle at different locations, and correlate them in time via extremely precise GPS clocks. The amount of phase angle difference provides information about the stability and direction of power flow.

Slick Sheet: Project
General Electric (GE) Global Research is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability.

Slick Sheet: Project
The University of Illinois, Urbana-Champaign (UIUC) is developing scalable grid modeling, monitoring, and analysis tools that would improve its resiliency to system failures as well as cyber attacks, which can significantly improve the reliability of grid operations. Power system operators today lack the ability to assess the grid’s reliability with respect to potential cyber failures and attacks.

Slick Sheet: Project
Silicon Power is developing a semiconducting device that switches high-power and high-voltage electricity using optical signals as triggers for the switches, instead of conventional signals carried through wires. A switch helps control electricity, converting it from one voltage or current to another. High-power systems generally require multiple switches to convert energy into electricity that can be transmitted through the grid. These multi-level switch configurations use many switches which may be costly and inefficient.