Slick Sheet: Project
Noon will create a rechargeable battery that turns solar and wind electricity into on-demand power. The battery uses ultra-low-cost storage media and stores energy by splitting CO2 into solid carbon and oxygen. Noon’s technology could provide a low-cost storage option compared with existing batteries.

Slick Sheet: Project
Ammonia synthesis reactions, enabled by the Haber-Bosch process, account for approximately 3% of the world’s total energy use. HighT-Tech proposes a cascade reactor with a sequence of non- platinum group metals catalyst compositions tailored to a specific stage of the synthesis reaction. HighT-Tech’s novel, direct joule (electric current) heating process enables synthesizing high entropy alloy nanoparticles with various catalyst compositions.

Slick Sheet: Project
SiEnergy Systems is developing a hybrid electrochemical system that uses a multi-functional electrode to allow the cell to perform as both a fuel cell and a battery, a capability that does not exist today. A fuel cell can convert chemical energy stored in domestically abundant natural gas to electrical energy at high efficiency, but adoption of these technologies has been slow due to high cost and limited functionality. SiEnergy’s design would expand the functional capability of a fuel cell to two modes: fuel cell mode and battery mode.

Slick Sheet: Project
The University of South Carolina is developing an intermediate-temperature, ceramic-based fuel cell that will both generate and store electrical power with high efficiencies. Reducing operating temperatures for fuel cells is critical to enabling distributed power generation. The device will incorporate a newly discovered ceramic electrolyte and nanostructured electrodes that enable it to operate at temperatures lower than 500ºC, far below the temperatures associated with fuel cells for grid-scale power generation.

Slick Sheet: Project
Palo Alto Research Center (PARC) is developing an intermediate-temperature fuel cell that is capable of utilizing a wide variety of carbon-based input fuels such as methane, butane, propane, or coal without reformation. Current fuel cell technologies require the use of a reformer – which turns hydrocarbon fuels into hydrogen and can generate heat and produce gases. PARC’s design will include a novel electrolyte membrane system that doesn’t have a methane-to-hydrogen reformer, and transports oxygen in a form that allows it to react directly with almost any fuel.

Slick Sheet: Project
Materials & Systems Research, Inc. (MSRI) is developing an intermediate-temperature fuel cell capable of electrochemically converting natural gas into electricity or liquid fuel in a single step. Existing solid-oxide fuel cells (SOFCs) convert the chemical energy of hydrocarbons—such as hydrogen or methane—into electricity at higher efficiencies than traditional power generators, but are expensive to manufacture and operate at extremely high temperatures, introducing durability and cost concerns over time.

Slick Sheet: Project
MIT will develop critical components for a new, cost-effective, high efficiency power storage system to store renewable energy at grid scale and discharge it on demand. The system combines low-cost, very high-temperature energy storage with high-efficiency, innovative semiconductor converters used to transform heat into electricity. MIT’s technology would store heat at temperatures above 2000°C (3600°F) and convert it to electricity using specialized photovoltaic cells designed to remain efficient under the intense infrared heat a high-temperature emitter radiates.

Slick Sheet: Project
SwRI’s storage system is based on an innovative thermodynamic cycle to store energy in hot and cold fluids. This technology features a simplified system, high round-trip conversion efficiencies (the ratio of energy put in to energy retrieved from storage), and low plant costs. At full scale, the technology would provide more than 10 hours of electricity at rated power (the highest power input allowed to flow through particular equipment). SwRI will build a small kW-scale electric demonstrator to validate the technology, and develop control strategy and operational procedures.

Slick Sheet: Project
The University of California, San Diego (UC San Diego) is developing a universal battery integration system that conditions used EV batteries for use in second-life applications while simultaneously providing energy storage services to the electricity grid. In principle, millions of EV batteries can be repurposed in a “second life” to provide inexpensive stationary storage for homes, businesses, and the electricity grid. It is challenging to combine batteries because batteries with different ages and usage histories perform differently and have varying amounts of remaining life.

Slick Sheet: Project
The team led by the University of New Mexico will develop a modular electrochemical process for a power-to-fuel system that can synthesize ammonia directly from nitrogen and water. The proposed synthesis approach will combine chemical and electrochemical steps to facilitate the high-energy step of breaking the nitrogen-nitrogen bond, with projected conversion efficiencies above 70%.