Blog Posts
ARPA-E recently welcomed Dr. Nick Goeser as the federal Tech-to-Market (T2M) advisor for our agriculture technology portfolio. We sat down with Dr. Goeser ahead of ARPA-E’s upcoming carbon farming workshop to discuss his perspectives on the current state of domestic agriculture, and how ARPA-E can play a role in transforming the industry to better meet the needs of our society.

Slick Sheet: Project
Precision Combustion (PCI) proposes an innovative modular array to eliminate the release of ventilation air methane (VAM) associated with coal production. The team’s technology combines (1) a short contact time, low thermal mass reactor design to achieve high methane conversion in a small volume, (2) catalyst formulation and loading to minimize the required operating temperature of the oxidation reactor, and (3) system design and architecture to maximize the degree to which released heat is retained and recirculated.

Slick Sheet: Project
The University of Washington (UW) seeks to develop new photosynthetic systems that use sunlight from previously underutilized or inaccessible regions of the solar spectrum to produce chemicals and fuels. The UW team will use de novo-protein design (a computational approach to design proteins from scratch, rather than using a known protein structure) to modify photosynthetic light harvesting machinery for a broader spectrum, allowing more energy to be translated from light to chemical energy.

Slick Sheet: Project
Copernic Catalysts will design novel chemical catalysts to reduce the energy use and carbon footprint of bulk chemical reactions. Bulk chemicals—such as ammonia, ethylene, and methanol—are produced at very large scales, often up to hundreds of millions of tons annually, and are responsible for nearly one gigaton of greenhouse gas (GHG) emissions every year.

Slick Sheet: Project
Low-cost H2 is the key to affordable long-term grid storage technologies that could work well with grid-scale battery storage to accommodate high penetration of wind and solar electricity generation in the next decades. The California Institute of Technology (Caltech) seeks to develop a hybrid electrochemical/catalytic approach for direct generation of high-pressure H2. Caltech’s proposed system has the potential to reach <$2/kg of H2 produced and compressed at 700 bar using renewable energy sources.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) team will jointly develop an integrated process to produce butanol directly from air-captured carbon dioxide (CO2). Butanol has a higher energy density than ethanol and is a precursor to jet fuel. UC Berkeley’s system takes three main inputs: ambient air, water, and a sustainable energy source, and produces butanol.

Slick Sheet: Project
The University of Nebraska-Lincoln (UN-L) team will use their unique technology extrapolation domain (TED) framework to select agricultural sites to measure, aggregate, and validate local and regional environmental outcomes, including greenhouse gas (GHG) emissions. The team will provide a proof of concept leveraging data from SMARTFARM Phase 1 projects case studies, including soil organic carbon data, topographical data, soil pH, remote imagery, and other data collected by soil sensors, soil chambers, and eddy flux covariance towers.

Slick Sheet: Project
Kelson will continue developing simulation tools and methods for accurate and efficient design of U.S. macroalgae farms, building on the work done under the University of New England MARINER award. To maximize the impact of this effort, Kelson will implement these simulation methods in an open-source software tool that will be uniquely capable of analyzing the hydro-structural performance of offshore macroalgae farms.

Slick Sheet: Project
The University of Wisconsin-Madison aims to develop an integrated process to convert CO2 and renewable H2 into molecules that can be blended with liquid transportation fuels or used in various chemical applications. The project eliminates CO2 release in the production of chemicals by integrating the unique and efficient capabilities of two microorganisms. The first produces acetate from CO2 and H2 while the second upgrades acetate to higher-value chemical products. The CO2 released in the upgrading process is recycled internally to produce more acetate.

Slick Sheet: Project
The Ohio State University is designing, modeling, and constructing synthetic microbial groups consisting of three bacterial species. Lactic acid bacterium, a carboxydotrophic acetogen, and a solventogenic clostridium are grown in a consortium that produces n-butanol, an advanced biofuel and industrial chemical used in plastics, polymers, lubricants, brake fluids, and synthetic rubber. The bacteria will react with lignocellulose sugars (mainly glucose and xylose) and formate (from CO2 produced by electrochemical reduction) in a biorefinery.