Slick Sheet: Project
Harvard University is engineering a self-contained, scalable electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria.

Slick Sheet: Project
Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn't naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

Slick Sheet: Project
Massachusetts Institute of Technology (MIT) is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process.

Slick Sheet: Project
The Ohio State University is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive.

Slick Sheet: Project
Pennsylvania State University (Penn State) is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. In collaboration with the University of Kentucky, Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline.

Impact Sheet
LIQUID TRANSPORTATION FUEL FROM ELECTRICITY AND CO2 UPDATED: JANUARY 27, 2017 PROJECT TITLE: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production PROGRAM: Electrofuels AWARD: $4,400,000 PROJECT TEAM: Massachusetts Institute of Technology (Lead), University of Delaware, & Harvard University PROJECT TERM: July 2010 – March 2014

Publications
ABSTRACT: Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling.

Publications
ABSTRACT: After a century of unprecedented growth in science, technology, and the economy, we now face tremendous challenges to our ability to fuel the future: a fluctuating oil price, a changing climate, and continued dependence on unreliable energy sources. These problems are increasingly personal, and the demand for solutions becomes increasingly urgent. There are many changes that we must make to address these challenges, but the ultimate solution(s) will only come from fundamental innovations in science and technology.

Press Releases
At a Recovery Act Cabinet Meeting today, Vice President Joe Biden and Secretary of Energy Steven Chu announced that the U.S. Department of Energy is awarding $106 million in funding for 37 ambitious research projects that could fundamentally change the way the country uses and produces energy.

Blog Posts
The United States faces extraordinary challenges in the 21st century, from creating jobs to protecting the environment and reducing our energy dependency, but with strategic and smart investment we can create game-changing new technologies that overcome these challenges. The question is, will the U.S. make the choices necessary to “win the future?” Dr. Arun Majumdar -- the director of our advanced research agency, ARPA-E -- believes we can and should.