Slick Sheet: Project
Circe Bioscience is building a carbon-efficient precision fermentation platform to produce energy-rich long-chain carbon chemicals with applications in several industrial sectors including fuels, materials, and food. The Circe system has a high degree of feedstock flexibility allowing it to take advantage of the legacy bioeconomy for cheap sugar supply and of a growing green energy infrastructure for external reducing equivalents to achieve high carbon efficiency.

Slick Sheet: Project
The University of Illinois at Urbana-Champaign (UIUC) aims to eliminate ice/snow/frost accretion on stationary and mobile electrified systems by developing a multi-functional coating that synergistically combines two different ice/snow/frost removal mechanisms. The team will incorporate pulsed interfacial heating with controlled surface wettability to demonstrate a two orders of magnitude reduction in ice/snow/frost removal time with 50% lower energy consumption without bulk melting compared with state-of-the-art steady heating methods.

Slick Sheet: Project
The University of Colorado Boulder will manufacture and commercialize a net-CO2-storing portland limestone cement using biogenic limestone (CaCO3) produced via photosynthesis that will store more than 275 kgCO2 and cost less than $100 per ton of cement. Most cement-related CO2 emissions are caused by heating CaCO3 to produce calcium oxide (quicklime), which releases CO2 in the process. The proposed technology will produce biogenic CaCO3 using calcifying microalgae that sequester and store CO2 in mineral form through biological direct air capture via photosynthesis and calcification.

Slick Sheet: Project
Rio Tinto Services will collaborate with Columbia University, Pacific Northwest National Laboratory, Talon Nickel, Carbfix, and Advantek Waste Management Solutions to develop innovative technologies to potentially sequester CO2 based on the characterization, determination of reaction kinetics, and modeling of the Tamarack Nickel Project’s bowl-shaped ultramafic intrusion. This sequestration would be achieved via the conversion of CO2 into solid rock.

Slick Sheet: Project
The University of Wisconsin-Madison will produce carbon-negative concrete building components using cementitious materials generated by a carbon mineralization-based direct air capture (DAC) process. The DAC process uses a novel aqueous carbonation cycle to capture CO2 from the air at low cost. Simultaneously, the process upcycles industrial mineral wastes as cementitious materials by enhancing their pozzolanic reactivity (i.e. ability to form minerals that contribute to strength).

Slick Sheet: Project
The technology proposed by the Georgia Institute of Technology avoids surfactant use to generate a stable foam by instead relying on hydrodynamic means to generate an unstable high-density foam to disperse the fiber into. The fiber mat is formed in a fast dynamic process before loss of integrity of the multi-phase fiber-air bubble mixture. The team will develop a next-generation paper manufacturing system that includes a novel microbubble generator integrated with a next generation headbox that can scale up for commercial production.

Slick Sheet: Project
Captura will demonstrate efficient CO2 stripping from oceanwater using low-cost thin film composite hollow fiber membranes. The team will use ultra-low-cost hollow fiber membranes, traditionally used in water filtration applications, as a structural support, and modify their outer layers with highly CO2 permeable polydimethylsiloxane layers to selectively strip CO2 from oceanwater. Captura will also employ a computational model-assisted design and rapidly prototype new gas liquid contactor designs that use counterflow and cross-flow design for efficient CO2 stripping from oceanwater.

Slick Sheet: Project
Gencores enables technology for ultra-light vehicles to decarbonize transportation. Herein they demonstrate a scalable and digital production of low-cost and high-performance hybrid Polymethacrylimide (PMI) foam cores for sandwich composite constructions. Sandwich composites feature a foam core wrapped in fiber-reinforced skins and offer a 40-75% weight reduction potential compared with traditional metal alternatives. Current PMI foam cores are costly and time-consuming to produce in complex shapes.

Slick Sheet: Project
The University of Tennessee-Knoxville (UTK) will develop higher performance, carbon-negative, and eco-friendly lignin polyurethane (PU) foams as a building insulation material via non-isocyanate synthesis. Non-isocyanate PU via polyaddition of cyclic carbonates and amines is non-toxic and non-moisture sensitive. Lignin is inherently hydrophobic, antibacterial, and fire-resistant, which are essential properties of insulation materials. Lignin’s propensity to char instead of ignite is advantageous but insufficient to address modern anti-flammability requirements.

Slick Sheet: Project
Metalx Biocycle aims to enable the recycling of critical metals from electronic waste (e-waste) at a cost that is competitive against extraction via conventional mining. Most e-waste ends up in landfills where it causes serious environmental issues; and conventional extraction methods rely on inefficient, expensive, energyintensive processes. The Metalx Biocycle team will leverage biological processes to efficiently extract, concentrate, and purify critical metals and rare earth elements from e-waste and low-grade mineral ores.