Slick Sheet: Project
Adroit Materials aims to grow and fabricate gallium nitride (GaN)-based Junction Barrier Schottky (JBS) diodes using a novel ion implantation process. These JBS diodes are targeted for use in adjustable speed drive (ASD) motor systems, replacing silicon and silicon carbide (Si and SiC)-based diodes. Compared with existing Si diode-based systems, the energy loss in the diode front end rectifier system could be reduced by about 50%. The team will perform selective area doping via implantation of magnesium ions in combination with high pressure, high temperature activation annealing.

Slick Sheet: Project
Adroit Materials will grow and fabricate aluminum nitride (AlN)-based Schottky diodes with electrical properties that will drastically reduce forward conduction (energy) losses compared with existing high-power diodes. The team will achieve this objective through implanting silicon ions in AlN, a wide bandgap semiconductor, combined with sophisticated point defect control processes to achieve controlled low doping. These breakthroughs enable a paradigm shift for the feasibility of AlN in next-generation power electronics.

Slick Sheet: Project
NoMIS Power Group (NoMIS) aims to bring to market within two years silicon carbide (SiC) power semiconductor devices and modules at less than half the cost of today’s commercial-off-the-shelf-solutions. The team will achieve this by sourcing chips from U.S. suppliers, in-house development of an innovative SiC module design, and outsourced module manufacturing in the U.S. The team will rigorously test the devices at leading U.S. research institutions.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
Fault protection must be provided for future turboelectric aircraft’s medium-voltage direct current power systems, but not necessarily from conventional circuit breakers. Illinois Institute of Technology will develop a 10 kV/150A superconducting momentary circuit interrupter (SMCI) to provide fault protection with ultralow power loss (<1 W), ultrafast response (<10 μs or ten millionth of a second), and high-power density. The architecture comprises an SMCI with a fast mechanical disconnect switch.

Slick Sheet: Project
A medium voltage direct current (MVDC) system provides lower distribution losses, higher power carrying capacity, and reduced conductor material compared with its low voltage alternative current counterpart. These benefits are critical to meet stringent weight and size requirements for aviation applications. The University of Tennessee will develop a lightweight, reliable, efficient, and flexible protection solution for future electrified aircraft propulsion systems that are expected to use a 1 kV to 10 kV MVDC distribution system.

Slick Sheet: Project
Cornell University will develop an innovative, high-efficiency, gallium nitride (GaN) power switch. Cornell’s design is significantly smaller and operates at much higher performance levels than conventional silicon power switches, making it ideal for use in a variety of power electronics applications. Cornell will also reuse expensive GaN materials and utilize conventional low-cost production methods to keep costs down.

Slick Sheet: Project
Arizona State University (ASU) will develop a process to produce low-cost, vertical, diamond semiconductor devices for use in high-power electronics. Diamond is an excellent conductor of electricity when boron or phosphorus is added—or doped—into its crystal structures. In fact, diamond can withstand much higher temperatures with higher performance levels than silicon, which is used in the majority of today’s semiconductor devices. However, growing uniformly doped diamond crystals is difficult and expensive.

Slick Sheet: Project
iBeam Materials is developing a scalable manufacturing method to produce low-cost gallium nitride (GaN) LED devices for use in solid-state lighting. iBeam Materials uses an ion-beam crystal-aligning process to create single-crystal-like templates on arbitrary substrates thereby eliminating the need for small rigid single-crystal substrates. This process is inexpensive, high-output, and allows for large-area deposition in particular on flexible metal foils.

Slick Sheet: Project
Michigan State University (MSU) will develop high-voltage diamond semiconductor devices for use in high-power electronics. Diamond is an excellent conductor of electricity when boron or phosphorus is added—or doped—into its crystal structures. It can also withstand much higher temperatures with higher performance levels than silicon, which is used in the majority of today’s semiconductors. However, current techniques for growing doped diamond and depositing it on electronic devices are difficult and expensive.