Slick Sheet: Project
Precision Combustion Inc. (PCI) will develop a process-intensified, multi-functional SOFC architecture that permits a power dense, lightweight design and fast start-up for transportation applications. PCI will combine advanced concepts, process intensification, and additive manufacturing to develop a cost-effective and readily manufacturable SOFC system. It is analogous to a scalable electrochemical chip.

Slick Sheet: Project
GE Grid Solutions plans to develop a SF6-free high-voltage AC outdoor dead-tank power circuit breaker. The circuit breaker will be rated at 245 kV and will also provide the basis for a two-break 550 kV rated design. It will use g3 TM gas mixture for current breaking and dielectric withstand. This project is a critical step in launching a range of products that meet U.S. energy industry requirements without using SF6 technology. These products are essential to reduce the bulk electric system’s carbon footprint and greenhouse gas emissions.

Slick Sheet: Project
The University of Connecticut proposes to develop a life-cycle management framework to accelerate and safeguard the transition of the U.S. power grid toward a sulfur hexafluoride (SF6)-free green power network. Although SF6 has several positive properties, it also has a global warming potential (GWP) 25,200 times that of CO2. Studies suggest the alternative environmentally friendly gas mixture g3TM as a promising potential replacement for SF6.

Slick Sheet: Project
HydroMINE is a disruptive and elegantly simple modular system with a relatively small internal propeller driven by pressure from a stationary hydrofoil structure to a separate, internal flow stream. The internal propeller drives an ordinary electric direct drive generator. The size of the stationary HydroMINE hydrofoil structure is comparable to an equivalent ordinary rotor of the same swept area producing a similar amount of energy. The external floating structure is passive, only yawing slowly with the ocean tide or river flow direction.

Slick Sheet: Project
The RedoxBlox team will lead the engineering and development of a pilot-scale energy storage platform comprising a thermochemical energy storage module integrated with a gas turbine power generator. In addition, the team will conduct advanced materials and component-level investigations, including a comprehensive analysis of their core thermochemical energy storage material that enables this energy storage technology.

Slick Sheet: Project
Princeton Plasma Physics Laboratory and Woodruff Scientific, Inc., will develop a costing capability to help ARPA-E fusion performers estimate both the projected overnight capital cost and levelized cost-of-electricity (LCOE) of a fusion power plant based on their fusion concepts. These estimates will underlie essential technology-to-market analysis and help guide R&D priorities by illuminating the costliest aspects of different concepts and need for further development.

Slick Sheet: Project
Ocean Renewable Power Company, Inc. (ORPC) has led the development of crossflow turbine hydrokinetic technology worldwide. Multiple systems have demonstrated reliability over extended periods. The specific power of the present systems is low, however, leading to a high levelized cost of energy. ORPC proposes to develop an improved low-cost system using CCD and design for operation techniques. This novel hydrokinetic energy system will identify dynamic couplings between turbine subsystems and components to optimize system mass and performance. The new systems will be deployed in arrays.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) will expand its open-source Wind Energy with Integrated Servo-control (WEIS) toolbox to include control co-design capabilities of tidal and riverine hydrokinetic turbines. This new toolbox will enable the conception, design, simulation, and optimization of control co-designed hydrokinetic systems. The toolbox will facilitate innovation in the hydrokinetic turbine industry, allowing for less expensive and more reliable turbines.

Slick Sheet: Project
Underwater kite systems offer the promise of energy capture from tidal power with minimal structural costs. Current approaches are not scaled for small communities, however. SRI International will team with the University of California at Berkeley, which has facilities for hydrodynamic testing and experience with environmental issues and community engagement, to realize a system that is appropriate for small communities. SRI’s proposed Manta kite system is simple and based on the payout and reel-in pumping action of a kite.

Slick Sheet: Project
Emrgy, Inc., and its partners are implementing “dynamic tuning” of the HKT system to optimize performance across variable water flow conditions and implement new control algorithms at the system level to optimize array performance. Successful implementation may deliver LCOE of $0.07-0.10/kWh depending on deployment location. Broad deployment of the technology platform in riverine, tidal, and manmade canal resources may displace 1-2 Quads/year of traditional carbon-based generation and 150-300 gigatons of carbon production.