Slick Sheet: Project
MIT will develop a high performance, compact, and durable ceramic heat exchanger. The multiscale porous high temperature heat exchanger will be capable of operation at temperatures over 1200°C (2192°F) and pressures above 80 bar (1160 psi). Porosity at the centimeter-scale will serve as channels for the flow of working fluids. A micrometer-scale porous core will be embedded into these channels. A ceramic co-extrusion process will create the channels and core using silicon carbide (SiC).

Slick Sheet: Project
CompRex aims to transform heat exchange technology for high temperature (>800°C or 1472°F) and high pressure (80 bar or 1160 psi) applications through the use of advanced metal and ceramic composite material, development of a new simplified manufacturing approach, and optimization of heat exchanger design based on the new material and manufacturing process.

Slick Sheet: Project
The GE-led team will develop a metallic-based, ultra-performance heat exchanger enabled by additive manufacturing technology and capable of operation at 900°C (1652°F) and 250 bar (3626 psi). The team will optimize heat transfer versus thermomechanical load using new micro-trifurcating core structures and manifold designs. The team will leverage a novel, high-temperature capable, crack-resistant nickel superalloy, designed specifically for additive manufacturing.

Slick Sheet: Project
UTRC will develop an ultra-compact, topology-optimized heat exchanger capable of operating in environments with temperatures and pressures up to 800°C (1472°F) and 250 bar (3626 psi) that is substantially smaller and more durable than state-of-the art high-temperature, high-pressure heat exchangers. A quadruple optimization approach that addresses performance, durability, manufacturing, and cost constraints provides the framework for the superalloy-based heat exchanger.

Slick Sheet: Project
Thar Energy will develop a next-generation metallic compact recuperator, a type of heat exchanger, capable of stable and cost effective operation at 800°C (1562°F) and above 80 bar (1160 psi). A metallic superalloy capable of withstanding high temperature and pressure will be employed to fabricate the heat exchanger using a novel stacked sheet manufacturing technique.

Slick Sheet: Project
Massachusetts Institute of Technology (MIT) is developing a low-cost, compact, high-capacity, advanced thermo-adsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials' ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption.

Slick Sheet: Project
Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa's conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt.

Slick Sheet: Project
The University of South Florida (USF) is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well.

Slick Sheet: Project
Massachusetts Institute of Technology (MIT) is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun's not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours.

Slick Sheet: Project
Pacific Northwest National Laboratory (PNNL) is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours.