Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. In January, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
ARPA-E strives for excellence in both program development and program integration, to encourage new discussions and new perspectives.  This approach was on display at the recent ARPA-E “Ocean Week,” held from January 28-30, in Washington.  This three-day voyage into ARPA-E’s ocean-focused programs consisted of three events: The Macroalgae Research Inspiring Novel Energy Resources (MARINER) Program Review, the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) Program Kickoff, and a Submarine Hydrokinetic Industry Day.

Blog Posts
Newest ARPA-E Program Director Dr. Robert (Bob) J. Ledoux’s professional experience ranges from professor to entrepreneur and his patents from nonintrusive cargo inspection to medical technologies. Recently we had a chance to visit with Dr. Ledoux to discuss how he will bring his experience to bear to further ARPA-E’s mission.

Slick Sheet: Program

Slick Sheet: Project
The tokamak is the most scientifically mature fusion energy concept, which confines hot plasma in the shape of a torus (similar to a donut). This plasma is controlled in part by a central solenoid electromagnet. Using high-temperature superconductors (HTS) and an innovative design, Commonwealth Fusion Systems (CFS) and its partners aim to build a central solenoid capable of quickly changing (“fast ramping”) its current and magnetic field, while also being robust enough to survive many thousands of cycles.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
Princeton Plasma Physics Laboratory (PPPL) will design and build a prototype structure with an array of rare-earth permanent magnets to generate the precise shaping fields of an optimized, quasi-axisymmetric stellarator design. The stellarator is an attractive fusion-energy concept because it has minimal recycling power and auxiliary systems, and no-time dependent electro-magnet systems. Two challenges have delayed its progress: 1) obtaining adequate confinement in three-dimensional (3D) fields and 2) engineering the magnetic configuration with sufficient precision at low cost.

Slick Sheet: Project
More information on this project is coming soon!