Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. In January, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
ARPA-E strives for excellence in both program development and program integration, to encourage new discussions and new perspectives.  This approach was on display at the recent ARPA-E “Ocean Week,” held from January 28-30, in Washington.  This three-day voyage into ARPA-E’s ocean-focused programs consisted of three events: The Macroalgae Research Inspiring Novel Energy Resources (MARINER) Program Review, the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) Program Kickoff, and a Submarine Hydrokinetic Industry Day.

Blog Posts
Newest ARPA-E Program Director Dr. Robert (Bob) J. Ledoux’s professional experience ranges from professor to entrepreneur and his patents from nonintrusive cargo inspection to medical technologies. Recently we had a chance to visit with Dr. Ledoux to discuss how he will bring his experience to bear to further ARPA-E’s mission.

Slick Sheet: Project
Argonne National Laboratory (ANL) will research an electrochemical oxide reduction (OR) process that meets CURIE’s cost and waste metrics for a pyroprocessing facility. Electrochemical OR is a single-step process that converts used oxide fuels to metal that can be electrorefined to produce uranium/transuranic (U/TRU) alloys suitable for fabrication into advanced reactor fuels. However, current process inefficiencies result in non-uniform and incomplete conversion to metal, long process times, and large waste volumes.

Slick Sheet: Project
The University of Utah will research a pyrochemical process for efficiently converting UNF to a uranium/transuranic (U/TRU) product suitable for sodium-cooled fast reactors or molten-salt fueled reactors. This process is based on two key separations steps that can occur in a single reaction vessel: dissolution of oxide UNF in molten lithium chloride (LiCl)-potassium chloride (KCl) salt and electrochemical recovery of U/TRU metal on a cathode.

Slick Sheet: Project
The University of Colorado, Boulder (CU-Boulder), will advance high-resolution gamma-ray spectroscopy using cryogenic microcalorimeter arrays, which are an emerging tool for improved nuclear material accountancy. Microcalorimeter spectrometers measure gamma-ray energy much more precisely than other gamma-ray detectors, allowing them to resolve closely spaced gamma-ray lines such as those produced by plutonium isotopes near 100 keV, and detect lines that appear only weakly above background.

Slick Sheet: Project
Mainstream Engineering will research a series of vacuum swing separation unit operations to separate and capture volatile radionuclides from the off-gassing of UNF aqueous reprocessing facility operations. Off-gas management and disposal accounts for roughly 13% of aqueous reprocessing systems’ capital costs and at least 10% of their operating costs for product/waste containers and utilities.


Slick Sheet: Project
The Makai Ocean Engineering team will develop novel mooring and anchoring methods to reduce the costs of offshore renewable energy. Makai will enable grid-scale FOWT and MHK systems to be deployed in areas that would otherwise be inaccessible or too expensive with current mooring and anchoring technologies. At the center of this program is Makai’s Remote Anchoring and MicroPiling (RAMP) system, which can remotely install micropiles on the seafloor.

Slick Sheet: Project
The University of Michigan and Southwest Research Institute will use state-of-the-art methods to eliminate methane emissions from oil and gas (O&G) flares, vents, and other equipment. The approach will quantitatively characterize high- and low-volume methane sources at an actual O&G field site and demonstrate Systems of Advanced Burners for Reduction of Emissions (SABRE) technology for high-efficiency (> 99.5%) methane conversion of the high- and low-volume sources of methane. The SABRE approach leverages site resources and customizes flare technology to local equipment needs.