Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. In January, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
ARPA-E strives for excellence in both program development and program integration, to encourage new discussions and new perspectives.  This approach was on display at the recent ARPA-E “Ocean Week,” held from January 28-30, in Washington.  This three-day voyage into ARPA-E’s ocean-focused programs consisted of three events: The Macroalgae Research Inspiring Novel Energy Resources (MARINER) Program Review, the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) Program Kickoff, and a Submarine Hydrokinetic Industry Day.

Blog Posts
Newest ARPA-E Program Director Dr. Robert (Bob) J. Ledoux’s professional experience ranges from professor to entrepreneur and his patents from nonintrusive cargo inspection to medical technologies. Recently we had a chance to visit with Dr. Ledoux to discuss how he will bring his experience to bear to further ARPA-E’s mission.

Slick Sheet: Project
MetOx Technologies is developing faster manufacturing of low-cost high-temperature superconducting tapes to enable the energy transition, such as supporting more powerful electric grid cables and more powerful magnets to unlock fusion power generation. MetOx will transform its manufacturing process in several areas including improving equipment throughput, material efficiency, and tape performance.

Slick Sheet: Project
High Temperature Superconductors will increase the production speed and reduce the cost of high-temperature superconducting coated conductor tapes by using a pulsed laser deposition process to support the development of transformational energy technologies including nuclear fusion reactors. By developing tools to expand the area on which the superconducting layers are deposited, the team at High Temperature Superconductors will raise production speeds by five to ten times compared to that of present-day levels while improving the quality and consistency of the materials.

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program