Slick Sheet: Project
Stony Brook University will develop advanced technologies for gas-cooled reactors to increase their power density, enabling them to be smaller. The team seeks to develop a high-performance moderator—which slows down neutrons so they can cause fission—to enable a compact reactor with enhanced safety features. Shrinking the reactor size enables greater versatility in deployment and reduced construction times and costs, both of which are especially important for smaller modular reactor systems that may be constructed wherever heat and power are needed.

Slick Sheet: Project
Advanced reactors, including Moltex’s stable salt reactor design, may be able to forgo large, expensive containment structures common in the current fleet of nuclear plants. Molten salt fuel chemically binds dangerous radionuclides, limiting the potential for radioactive gas release. The Moltex team will apply modeling and simulation to demonstrate the absence of radionuclide release for their reactor concept in accident scenarios, and the associated feasibility of using a new class of containment structures that are faster to install onsite and with higher composite strength.

Slick Sheet: Project
Texas Tech University will develop a new type of neutron detector for geothermal and well logging systems. The technology aims to efficiently expand exploration for oil, gas, and geothermal resources into areas with more extreme conditions. Texas Tech seeks to produce solid-state thermal neutron detectors based on 100% boron-10 enriched boron nitride wide bandgap semiconductors. The new product would replace the pressurized and cumbersome He-3 gas tube detectors.

Slick Sheet: Project
Oregon State University (OSU) will precisely measure the performance of three commercially-available home generators. The team will collect data on engine efficiency, endurance, emissions, and calculate a levelized cost of electricity (LCOE) for each generator. Published data on the performance of small generators is scarce, which has hampered efforts to identify where new technologies can be applied to improve the efficiency of small generators.

Slick Sheet: Project
The University of Washington (UW) will develop a new approach to generate edge transport barriers (ETBs), a way to confine and retain plasma heat. Many low-cost magnetized target fusion concepts rely on plasmas having sufficient energy confinement to reach the necessary densities and temperatures required for the large-scale production of fusion power. ETBs enable higher performance (better energy confinement), and more compact fusion plasmas for mainline fusion experiments.

Slick Sheet: Project
Missouri S&T will combine a novel additive manufacturing technique, called ceramic on-demand extrusion, and ceramic fusion welding techniques to manufacture very high temperature heat exchangers for power cycles with intense heat sources. Enabling turbine operation at significantly higher inlet temperatures substantially increases power generation efficiency and reduces emissions and water consumption.

Slick Sheet: Project
The University of Maryland will design, manufacture, and test high-performance, compact heat exchangers for supercritical CO2 power cycles. Two innovative additive manufacturing processes will enable high performance. One facilitates up to 100 times higher deposition rate compared with regular laser powder additive manufacturing. The other enables crack-free additive manufacturing of an advanced nickel-based superalloy and has the potential to print features as fine as 20 micrometers.

Slick Sheet: Project
Michigan State University’s proposed technology is a highly scalable heat exchanger suited for high-efficiency power generation systems that use supercritical CO2 as a working fluid and operate at high temperature and high pressure. It features a plate-type heat exchanger that enables lower cost powder-based manufacturing. The approach includes powder compaction and sintering (powder metallurgy) integrated with laser-directed energy deposition additive manufacturing.

Slick Sheet: Project
Michigan Technological University will use advanced ceramic-based 3D printing technology to develop next-generation light, low-cost, ultra-compact, high-temperature, high-pressure (HTHP) heat exchangers. These will be able to operate at temperatures above 1100°C (2012°F) and at pressures above 80 bar (1160 psi). Current technologies cannot produce the high density, monolithic sintered silicon carbide (SSiC) material required for high temperature, high pressure recuperators.

Slick Sheet: Project
UTRC will develop a high temperature, high strength, low cost glass-ceramic matrix composite heat exchanger capable of a long operational life in a range of harsh environments with temperatures and pressures as high as 1100°C (2012°F) and 250 bar (3626 psi). UTRC designed its Counterflow Honeycomb Heat Exchanger (CH-HX) configuration with an oxidation-resistant material developed initially for gas turbine applications. Its core feature is a joint-free, 3D-woven assembly of webbed tubes and cylindrical shapes to reduce stress and simplify manufacturing.