Slick Sheet: Project
Purdue University will develop an integrated, connected vehicle control system for diesel-powered Class 8 trucks. Improvements from this system are expected to achieve 20% fuel consumption reduction relative to a 2016 baseline Peterbilt Class 8 truck. Class 8 trucks are large (over 33,000 lbs) vehicles such as trucks and tractor-trailer combinations like 18-wheelers. While these large trucks represent only 4% of all on-road vehicles in the U.S., they are responsible for almost 22% of global on-road fuel consumption.

Slick Sheet: Project
Pennsylvania State University (Penn State) will develop a predictive control system that will use vehicle connectivity to reduce fuel consumption for a heavy duty diesel vehicle by at least 20% without compromising emissions, drivability, mobility, or safety. The technology will work to achieve four individual and complementary goals that co-optimize vehicle dynamic and powertrain control. First, it will exploit connected communication to anticipate traffic/congestion patterns on different roads, traffic light timing, and the speed trajectories of surrounding vehicles.

Slick Sheet: Project
The Ohio State University will develop and demonstrate a transformational powertrain control technology that uses vehicle connectivity and automated driving capabilities to enhance the energy consumption of a light duty passenger vehicle up-fitted with a mild hybrid system. At the core of the proposed powertrain control technology, is the use of a novel cylinder deactivation strategy called Dynamic Skip Fire which makes instantaneous decisions about which engine cylinders are fired or skipped thus significantly improving vehicle energy efficiency.

Slick Sheet: Project
Michigan Technological University (MTU), in partnership with General Motors (GM), will develop, validate, and demonstrate a fleet of connected electric vehicles and a mobile cloud-connected computing center. The project will integrate advanced controls with connected and automated vehicle functions and enable: eco-routing, efficient approach and departure from traffic signals and cooperative driving between multiple vehicles, including speed harmonization.

Slick Sheet: Project
The University of Minnesota (UMN) will lead a team to develop technology to improve the fuel efficiency of delivery vehicles through real-time vehicle dynamic and powertrain control optimization using two-way vehicle-to-cloud (V2C) connectivity. The effort will lead to greater than 20% fuel economy improvement of a baseline 2016 E-GEN series hybrid delivery vehicle operating as part of the United Parcel Service (UPS) fleet. Large delivery vehicle fleet operators such as UPS currently use analytics to assign routes in such a way to minimize fuel consumption.

Slick Sheet: Project
The University of Michigan will develop an integrated power and thermal management system for connected and automated vehicles (iPTM-CAV), with the goal of achieving a 20% improvement in energy consumption. This increase will arise from predicting the traffic environment with transportation analytics, optimizing vehicle speed and load profiles with vehicle-to-everything (V2X) communication, coordinating power and thermal control systems with intelligent algorithms, and optimizing powertrain operation in real time.

Slick Sheet: Project
The University of Delaware (UD) will develop and implement a control technology aimed at maximizing the energy efficiency of a 2016 Audi A3 plug-in hybrid vehicle by more than 20% without reducing the vehicle's drivability, performance, emissions, and safety. The technology will use connectivity between vehicles and infrastructure to co-optimize vehicle dynamic and powertrain controls. It will compute optimal routing for desired destinations while bypassing bottlenecks, accidents, special events, and other conditions that affect traffic flow.

Slick Sheet: Project
General Motors will lead a team to develop "InfoRich" vehicle technologies that will combine advances in vehicle dynamic and powertrain control technologies with recent vehicle connectivity and automation technologies. The result will be a light duty gasoline vehicle that demonstrates greater than 20% fuel consumption reduction over current production vehicles while meeting all safety and exhaust emissions standards.

Slick Sheet: Project
Southwest Research Institute (SwRI) will develop control strategies and technology to improve the energy efficiency of a 2017 Toyota Prius Prime plug-in hybrid electric vehicle through energy-conscious path planning and powertrain control. The team will modify the vehicle to take advantage of connected, autonomous vehicle information streams and develop systems that co-optimize the control of vehicle speed and engine power to minimize energy consumption, maintain safety, and deliver expected performance.

Slick Sheet: Project
OnBoard Dynamics is modifying a passenger vehicle to allow its internal combustion engine to be used to compress natural gas for storage on board the vehicle. Ordinarily, filling a compressed natural gas vehicle with natural gas would involve driving to a natural gas refueling station or buying an expensive stand-alone station for home use. OnBoard's design would allow natural gas compression to take place in a single cylinder of the engine itself, allowing the actual car to behave like a natural gas refueling station.