Connected and Automated Class 8 Trucks

Default ARPA-E Project Image


Program:
NEXTCAR
Award:
$4,770,000
Location:
West Lafayette, Indiana
Status:
CANCELLED
Project Term:
05/22/2017 - 05/21/2020

Technology Description:

Purdue University will develop an integrated, connected vehicle control system for diesel-powered Class 8 trucks. Improvements from this system are expected to achieve 20% fuel consumption reduction relative to a 2016 baseline Peterbilt Class 8 truck. Class 8 trucks are large (over 33,000 lbs) vehicles such as trucks and tractor-trailer combinations like 18-wheelers. While these large trucks represent only 4% of all on-road vehicles in the U.S., they are responsible for almost 22% of global on-road fuel consumption. The Purdue team's work is based on a system-of-systems approach that integrates hardware and software components of the powertrain, vehicle dynamic control systems, and vehicle-to-everything (V2X) communication, supported by cloud computing. Communication between vehicles relies on short range radio, while cloud communications will operate over the LTE cellular network. This approach will provide the data needed to optimize single vehicle or two vehicles closely following each other in a platooning formation – reducing the platoon’s overall energy consumption using technologies such as predictive cruise control and coordinated gear shifting. The proposed technology can also be applied to lighter class of trucks as the same performance shortcomings for Class 8 truck engines and transmissions also exist in lighter vehicle classes.

Potential Impact:

If successful, Purdue’s project will enable at least an additional 20% reduction in energy consumption of future connected and automated freight trucks.

Security:

These innovations could lead to a dramatically more efficient domestic vehicle fleet, lessening U.S. dependence on imported oil.

Environment:

Greater efficiency in freight transportation can help reduce sector emissions, helping improve urban air quality and decreasing the sector’s carbon footprint.

Economy:

Project innovations would further solidify the United States’ status as a global leader in connected and automated vehicle technology, while a more efficient vehicle fleet would reduce energy cost per mile driven and bolster economic competitiveness.

Contact

ARPA-E Program Director:
Dr. Marina Sofos
Project Contact:
Dr. Gregory Shaver
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
gshaver@purdue.edu

Partners

National Renewable Energy Laboratory
Cummins Corporate Research & Technology
Peloton Technology

Related Projects


Release Date:
04/12/2016