Slick Sheet: Project
In the last decade, big data has enabled high-yield production of bioenergy crops. The drawback in agricultural systems data is that researchers are grappling with large, complex, multidimensional datasets comprised of thousands of data layers captured weekly or daily in dynamic outdoor environments. Converting all of these measurements into knowledge and actionable outcomes that keeps up with farmer and researcher demand is difficult. Tools that can automatically detect patterns in this data are needed to guide agricultural researchers to better inform experimental design and data analysis.

Slick Sheet: Project
Nanocomp Technologies will develop an industrially scalable method to convert NG to a high-value carbon material, Miralon®, while also producing H2. Converting methane to solids serves effectively as pre-combustion carbon capture. This process can occur at the megaton scale at permanent locations or a smaller scale at remote locations such as flare gas sites, where methane and other gases can be converted to more easily transported solid carbon and electricity.

Slick Sheet: Project
KRuMBS will develop novel bioprocesses to degrade marine macroalgae to bioenergy products (methane, alcohols, etc.). The microorganisms used in the bioprocess will be derived from the gut of ruminant marine finfish (Kyphosidae). While there is abundant potential for expansion of macroalgae production in offshore environments, they are difficult to transform into salable products. The team will work with its partners to isolate, optimize, and deploy microbial consortia and individual microorganisms capable of rapidly digesting macroalgal biomass in a highly scalable way.

Slick Sheet: Project
The team led by Starfire Energy will develop a modular, small-scale, HB-type process for ammonia synthesis. The team’s innovative approach is less energy-intensive and more economical than conventional, large-scale HB because a novel electroactive catalyst allows operation at lower temperatures and pressures. Their approach combines a high-activity precious metal catalyst and an electroactive catalyst support to form ammonia molecules, while operating at moderate pressures and using localized high-temperature reaction zones.

Slick Sheet: Project
The team led by Oregon State University (OSU) is developing a novel gas-to-liquid (GTL) technology that utilizes a “corona discharge” plasma to convert methane to higher value chemicals, such as ethylene or liquid fuels. A corona discharge is formed when a high voltage is applied across a gap with a shaped electrode that concentrates the electric field at a tip. At sufficiently high voltage, an electrical discharge (characterized by a faint glow - a corona) is formed, and ionizes the surrounding gas molecules, i.e. split them into positive ions and free electrons.

Slick Sheet: Project
The University of Illinois, Urbana-Champaign (UIUC) team proposes to increase the water-use efficiency in sorghum production, enabling plants to produce the same yield with 40% less water. By analyzing mathematical models of crop physiology and biophysics, the UIUC team has identified multiple strategies to improve water-use efficiency. In one instance, the team will decrease water loss within plants by shifting photosynthetic activity from leaves at the top of crop canopy where it is drier to lower leaves that operate in higher humidity.

Slick Sheet: Project
Texas A&M AgriLife Research will develop ground penetrating radar (GPR) antenna arrays for 3D root and soil organic carbon imaging and quantification. Visualization of root systems with one mm resolution in soils could enable breeders to select climate-resilient bioenergy crops that provide higher yields, require fewer inputs, improve soil health, and promote carbon sequestration. Texas A&M will create a GPR system that will collect real-time measurements using a deployable robotic platform.

Slick Sheet: Project
The University of Tennessee (UT) team proposes to develop a tool that will revolutionize plant metabolic engineering by using a large scale DNA synthesis strategy. The UT team will develop synthetic chloroplast (the part of the plant cell where photosynthesis occurs) genomes, called “synplastomes.” Rather than introducing or editing genes individually inside the plant cell, the UT team will synthesize a complete chloroplast genome in the laboratory that can be readily modified and then introduced into the plant.

Slick Sheet: Project
The University of Tennessee (UT) is developing technology to rapidly screen the genetic traits of individual plant cells for their potential to improve biofuel crops. By screening individual cells, researchers can identify which lines are likely to be good cellulosic feedstocks without waiting for the plants to grow to maturity. UT’s technology will allow high throughput screening of engineered plant cells to identify those with traits that significantly reduce the time and resources required to maximize biofuel production from switchgrass.

Slick Sheet: Project
The University of Colorado, Boulder (CU-Boulder) is using nanotechnology to improve the structure of natural gas-to-liquids catalysts. The greatest difficulty in industrial-scale catalyst activity is temperature control, which can only be solved by improving reactor design. CU-Boulder’s newly structured catalyst creates a small-scale reactor for converting natural gas to liquid fuels that can operate at moderate temperatures. Additionally, CU-Boulder’s small-scale reactors could be located near remote, isolated sources of natural gas, further enabling their use as domestic fuel sources.