Slick Sheet: Project
Molecule Works will develop an electrochemical membrane reactor to produce ammonia from air, water, and renewable electricity. The team proposes a solid-state, thin-film alkaline electrochemical cell that has the potential to enhance ammonia synthesis productivity and energy efficiency, while lowering the cell material and fabrication costs. Current systems for ammonia production all have several challenges. Some use acidic membranes that can react with ammonia, resulting in lower conductivity and reduced membrane life.

Slick Sheet: Project
Gas Technology Institute (GTI) will develop a process for producing dimethyl ether (DME) from renewable electricity, air, and water. DME is a clean-burning fuel that is easily transported as a liquid and can be used as a drop-in fuel in internal combustion engines or directly in DME fuel cells. Ultimately carbon dioxide (CO2) would be captured from sustainable sources, such as biogas production, and fed into a reactor with hydrogen generated from high temperature water splitting. The CO2 and hydrogen react on a bifunctional catalyst to form methanol and a subsequently DME.

Slick Sheet: Project
West Virginia University Research Corporation (WVURC) will develop a process to convert renewable electricity, water, and air into ammonia using plasma excitation at low temperatures and pressures. This process is different from both electrochemical conversion processes and catalytic processes like the HB process. In this form of physical activation, the microwave-plasma process can activate nitrogen and hydrogen, generating ions and free radicals that react over the catalyst surface to form ammonia.

Slick Sheet: Project
The University of Minnesota (UMN) will develop a small-scale ammonia synthesis system using water and air, powered by wind energy. Instead of developing a new catalyst, this team is looking to increase process efficiency by absorbing ammonia at modest pressures as soon as it is formed. The reactor partially converts a feed of nitrogen and hydrogen into ammonia, after which the gases leaving the reactor go into a separator, where the ammonia is removed and the unreacted hydrogen and nitrogen are recycled.

Slick Sheet: Project
Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs.

Slick Sheet: Project
Rensselaer Polytechnic Institute (RPI) will develop an innovative, hollow fiber membrane reactor that can generate high purity hydrogen from ammonia. The project combines three key components: a low-cost ruthenium (Ru)-based catalyst, a hydrogen-selective membrane, and a catalytic hydrogen burner. Pressurized ammonia vapor is fed into the reactor for high-rate decomposition at the Ru-based catalyst and at a reaction temperature below 450°C. Ceramic hollow fibers at the reactor boundary will extract the high purity hydrogen from the reaction product.

Slick Sheet: Project
FuelCell Energy will develop an advanced solid oxide fuel cell system capable of generating ammonia from nitrogen and water, and renewable electricity. The unique design will also allow the system to operate in reverse, by converting ammonia and oxygen from air into electricity. A key innovation in this project is the integration of proton-conducting ceramic membranes with new electride catalyst supports to enable an increase in the rate of ammonia production.

Slick Sheet: Project
Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs.

Slick Sheet: Project
The University of Illinois, Urbana-Champaign (UIUC) is working to convert sugarcane and sorghum—already 2 of the most productive crops in the world—into dedicated bio-oil crop systems. Three components will be engineered to produce new crops that have a 50% higher yield, produce easily extractable oils, and have a wider growing range across the U.S. This will be achieved by modifying the crop canopy to better distribute sunlight and increase its cold tolerance.

Slick Sheet: Project
Texas A&M Agrilife Research is addressing one of the major inefficiencies in photosynthesis, the process by which plants convert sunlight into energy. Texas A&M Agrilife Research is targeting the most wasteful step in photosynthesis by redirecting a waste byproduct into a new pathway that will create terpenes—energy-dense fuel molecules that can be converted into jet or diesel fuel. This strategy will be first applied to tobacco to demonstrate more efficient terpene production in the leaf.