Slick Sheet: Project
C-Zero will develop a novel process for transforming methane into hydrogen and valorized carbon cement additive using high temperature liquids in a multi-phase pyrolysis reactor. Unlike current hydrogen generation technologies, C-Zero’s process will not directly coproduce carbon dioxide CO2 and does not require water as an input. If successful, this technology will allow C-Zero to significantly reduce the cost of hydrogen and accelerate large-scale, domestic hydrogen production with low carbon footprint.

Slick Sheet: Project
Johns Hopkins University aims to develop an energy-efficient, scalable approach to convert methane into hydrogen and valuable graphitized carbon fibers (GCFs).The team will design an electrothermal reactor to pyrolyze (decompose) methane into hydrogen and low-quality carbon products, such as graphite particles, which will then be spun and heated to GCFs. These high-quality fibers can be used for construction material applications.

Slick Sheet: Project
Cambridge Crops will develop two advanced bioreactor systems to assess scaling and outcomes for the production of complex, value-added biomaterials as a method for reducing greenhouse gas emissions. The technology will determine the feasibility of scaling complex 3D cultures and provide data on suitable mass and energy balances to predict greenhouse gases and energy savings.

Slick Sheet: Project
Carbon dioxide utilization can help reduce carbon emissions, but gaps remain in the value chain from initial capture to high-value products. Lectrolyst LLC will develop an electrochemical platform centered on selective two-step conversion of CO2 to acetic acid and ethylene, to fill this need. Preliminary life cycle assessment and techno-economic analysis indicate ~200 million metric tons of CO2 emissions reduction when targeting these products at global scale while competing on a cost basis without considering carbon pricing.

Slick Sheet: Project
MOgene Green Chemicals will develop a novel photosynthetic microorganism-based consortia to capture carbon and build soil organic matter. Intensive agriculture practices, including the removal of residual crops, use of synthetic fertilizer and herbicides, and tillage practices, have led to lost organic matter, increased greenhouse gas emissions, and reduced capacity of the soil to store carbon. If successful, the team’s technology could increase organic matter production, help soil store additional carbon, and create more utilizable nitrogen.

Slick Sheet: Project
Arva will establish validation sites where dedicated energy crops (corn-soy or sorghum) and crop residues (straw/stover) are used to produce domestic, sustainable, carbon-negative biofuels (i.e., ethanol, biodiesel, or biogas). Arva will measure carbon and nitrogen fluxes using state-of-the-art high-frequency commercial-scale monitoring towers to assess carbon dioxide, nitrous oxide, and methane emissions at sub-second resolution yearlong.

Slick Sheet: Project
Northwestern University and partners will leverage computational protein design to engineer and repurpose a natural catalyst to convert methane gas to liquid fuel. Current industrial processes to convert methane to liquid fuels are costly, or inefficient and wasteful. To address this, Northwestern University will alter natural catalysts to create versatile new protein catalysts that convert methane to methanol which can more easily integrate into fuel production pathways.

Slick Sheet: Project
The University of California, Los Angeles (UCLA) seeks to develop a platform technology, Catalytic Units for Synthetic Biochemistry (CUSB) that will use enzymes in solution (i.e. in vitro) to convert carbohydrates into a wide variety of useful carbon compounds in extremely high yield. The use of enzymes in solution has advantages over whole-cell microorganisms. Enzymes can be concentrated much further than whole-cells which improves volumetric productivity.

Slick Sheet: Project
GreenLight Biosciences is developing a cell-free bioreactor that can convert large quantities of methane to fuel in one step. This technology integrates biological and chemical processes into a single process by separating and concentrating the biocatalysts from the host microorganisms. This unique “cell-free” approach is anticipated to improve the productivity of the reactor without increasing cost. GreenLight’s system can be erected onsite without the need for massive, costly equipment. The process uses natural gas and wellhead pressure to generate the power needed to run the facility.

Slick Sheet: Project
Oregon State University (OSU) will develop a small-scale bioreactor that can enable high-rate, low cost bioconversion of methane to liquid fuel. Current systems to convert methane using microorganisms can be slow and inefficient due to the low rate at which methane gas and nutrients are transferred to biocatalysts as well as the build-up of toxins that affect the health of biocatalysts. Using an ultra-thin, stacked "Bio-Lamina-Plate" system OSU will attempt to improve the overall rate at which methane is transferred to the biocatalysts.