Slick Sheet: Project
MOgene Green Chemicals will engineer a photosynthetic organism for methane conversion that can use energy from both methane and sunlight. The first step in aerobic biological activation of methane requires oxygen and the introduction of energy in the form of heat. Organisms that use methane typically do so through a process that creates carbon dioxide, a greenhouse gas, losing energy-rich carbon molecules in the process. To address this, MOgene will engineer a “phototrophic” organism to convert methane that is capable of deriving additional energy from sunlight.

Slick Sheet: Project
The University of Michigan team will develop a biological approach to activate methane, the first step in creating a liquid fuel from natural gas. Current approaches to methane activation require the addition of oxygen and energy in the form of heat, which is inefficient and costly. The University of Michigan’s multidisciplinary team will engineer a methane-generating microorganism that can activate methane without the need for these additional inputs.

Slick Sheet: Project
The University of Delaware (UD) will develop a direct ammonia fuel cell operating near 100°C that will efficiently convert ammonia to electricity for electric vehicles and other applications. The team will develop new materials, including low-cost, high-performance hydroxide exchange membranes (HEMs) that can maintain stability near 100°C and novel ammonia oxidation catalysts.

Slick Sheet: Project
Research Triangle Institute (RTI) will develop a catalytic technology for converting renewable energy, water, and air into ammonia. Their work focuses on three innovations: the development of an ammonia synthesis catalyst for improved reactions, refinement of the ammonia synthesis to handle intermittent loads, and optimized and scalable technologies for air separation to produce high-purity nitrogen.

Slick Sheet: Project
Giner will develop advanced membrane and catalysts electrolyzer components that can electrochemically generate ammonia using water, nitrogen and intermittent renewable energy sources. Their electrochemical reactor operates at a much lower pressure and temperature than conventional methods, which can lead to significant energy savings. Some of their key innovations include metal nitride catalysts and high temperature poly(aryl piperidinium) anion exchange membranes (AEM) to boost the ammonia production rate and enhance process stability.

Slick Sheet: Project
Bettergy will develop a catalytic membrane reactor to allow on-site hydrogen generation from ammonia. Ammonia is much easier to store and transport than hydrogen, but on-site hydrogen generation will not be viable until a number of technical challenges have been met. The team is proposing to develop a system that overcomes the issues caused by the high cracking temperature and the use of expensive catalysts. Bettergy proposes a low temperature, ammonia-cracking membrane reactor system comprised of a non-precious metal ammonia cracking catalyst and a robust composite membrane.

Slick Sheet: Project
Wichita State University will develop a renewable energy-powered electrochemical device for ammonia production at ambient temperature. This allows the unit to consume less energy but maintain high productivity. The goal is an alternative path for ammonia electrochemical synthesis from water and air without the need for the high temperature and pressure required by the Haber-Bosch process. The key innovation is the use of a hydroxide-exchange membrane (HEM) polymer electrolyte.

Slick Sheet: Project
Opus 12 will develop a cost effective, modular reactor to electrochemically convert CO2 to ethanol in one step using water, air, and renewable electricity. Electrochemical reduction of CO2 has been demonstrated in laboratories to produce different fuels and chemicals, but these technologies do not provide efficient conversions and can only be executed in non-economical reactors. The Opus 12 team will integrate its novel cathode layer formulation, containing CO2 reducing catalysts and a polymer electrolyte, into an existing proton exchange membrane (PEM) electrolyzer architecture.

Slick Sheet: Project
Storagenergy Technologies will develop a solid-state electrolyzer that uses nitrogen or air for high-rate ammonia production. Current electrolyzer systems for ammonia production have several challenges. Some use acidic membranes that can react with ammonia, resulting in lower conductivity and reduced membrane life. Operation at conventional low temperatures (<100°C) traditionally have low rates of reactions, while those that operate at high temperatures (>500°C) have long-heating processes that make them less practical for intermittent operation using renewable energy.

Slick Sheet: Project
SAFCell will develop a novel electrochemical system that converts ammonia to hydrogen. The key innovation is the use of a solid acid electrolyte, a type of electrolyte that is stable in the presence of ammonia while under the operating conditions needed for reactions. Solid acid fuel cell stacks operate at intermediate temperatures (around 250°C) and demonstrate high tolerances to typical anode catalyst poisons such as carbon monoxide and hydrogen sulfide without a significant decrease in performance.