Slick Sheet: Project
General Electric (GE) Power & Water is developing an innovative, high-energy chemistry for a water-based flow battery. A flow battery is an easily rechargeable system that stores its electrode--the material that provides energy--as liquid in external tanks. Flow batteries have typically been used in grid-scale storage applications, but their flexible design architecture could enable their use in vehicles. To create a flow battery suitable for EVs, GE will test new chemistries with improved energy storage capabilities and built a working prototype.

Slick Sheet: Project
The University of California, San Diego (UC San Diego) is developing a new battery that can be built into a vehicle frame. Conventional electric vehicle batteries are constructed independently of chassis, which results in a heavier, more inefficient vehicle. By rethinking auto frame design and incorporating the battery into the frame, vehicles can be cheaper and lighter vehicle. Since conventional batteries require potentially flammable materials, UC San Diego will also explore new chemistries to make this multifunctional battery safe in the event of a collision.

Slick Sheet: Project
Arizona State University (ASU) is developing an innovative, formable battery that can be incorporated as a structural element in the vehicle. This battery would replace structural elements such as roof and side panels that previously remained passive, and incapable of storing energy. Unlike today’s batteries that require significant packaging and protection, ASU’s non-volatile chemistry could better withstand collision on its own because the battery would be more widely distributed throughout the vehicle so less electricity would be stored in any single area.

Slick Sheet: Project
Purdue University is developing an EV battery pack that can better withstand impact during a collision. In contrast to today’s EV battery packs that require heavy packaging to ensure safety, Purdue’s pack stores energy like a standard battery but is also designed to absorb the shock from an accident, prevents battery failure, and mitigates the risk of personal injury. Batteries housed in protective units are arranged in an interlocking configuration to create an impact energy dissipation device.

Slick Sheet: Project
Ceramatec is developing new batteries that make use of a non-porous, high ion conductivity ceramic membrane employing a lithium-sulfur (Li-S) battery chemistry. Porous separators found in today’s batteries contain liquids that negatively impact cycle life. To address this, Ceramatec’s battery includes a ceramic membrane to help to hold charge while not in use. This new design would also provide load bearing capability, improved mechanical integrity, and extend battery life.

Slick Sheet: Project
Ionic Materials will develop a more energy dense (by volume and mass) rechargeable battery based on an aluminum-alkaline chemistry. At the center of Ionic Materials’ innovation is a new polymer-based material that suppresses the formation of undesired chemical products that prevent aluminum-alkaline batteries from recharging. Aluminum is a highly abundant natural resource and costs much less than cobalt, nickel, and lithium, key elements in today’s state-of-the-art batteries.

Slick Sheet: Project
Sila Nanotechnologies will develop a class of drop-in cathode replacement materials to double the energy stored in traditional LIBs, the most popular battery chemistry used in a wide range of applications, including electric vehicles. The Sila team will replace conventional Ni and Co-based cathodes with a nanostructured composite made from abundant materials that greatly increases the battery’s energy density.

Slick Sheet: Project
The team led by Pajarito Powder will develop a reversible hydrogen electrode that would enable cost-effective hydrogen production and reversible fuel cells. Both electrolyzers and fuel cells, generally operate in acidic conditions that rely on expensive precious metal catalysts to avoid corrosion. Running the electrochemical cell in alkaline conditions reduces the requirements for the oxygen electrode, but effective and inexpensive electrocatalysts for the hydrogen electrode still need to be developed. This project aims to develop a bi-functional (i.e.

Slick Sheet: Project
This endeavor continues an OPEN 2015 project, focusing on scaling the technology initially developed by the University of Michigan from lab to pilot scale. Zakuro LLC (Zakuro) will develop a solid state battery using lithium lanthanum zirconate (LLZO), which is a ceramic electrolyte that contains no flammable liquid. LLZO is manufactured with a lithium-free anode, which substantially simplifies assembly.

Slick Sheet: Project
The University of Nevada, Las Vegas (UNLV) is developing a solid-state, non-flammable electrolyte to make today’s Li-Ion vehicle batteries safer. Today’s Li-Ion batteries use a flammable liquid electrolyte—the material responsible for shuttling Li-Ions back and forth across the battery—that can catch fire when overheated or overcharged. UNLV will replace this flammable electrolyte with a fire-resistant material called lithium-rich anti-perovskite.