Slick Sheet: Project
Cadenza Innovation is developing an innovative system to join and package batteries using a wide range of battery chemistries. Today’s battery packs require heavy and bulky packaging that limits where they can be positioned within a vehicle. By contrast, Cadenza’s design enables flexible placement of battery packs to absorb and manage impact energy in the event of a collision. Cadenza’s battery will use a novel configuration that allows for double the energy density through the use of a multifunctional pack design.

Slick Sheet: Project
NASA’s Jet Propulsion Laboratory (JPL) is developing a new metal-hydride/air battery. Current electric vehicle batteries use costly components and require packaging and shielding to ensure safety. To address this, JPL’s technology will incorporate safe, inexpensive, and high-capacity materials for both the positive and negative electrodes of the battery as part of a novel design. Additionally, JPL’s design will use a membrane developed to prevent water loss and CO2 entry within the battery.

Slick Sheet: Project
Stanford University is developing an EV battery that can be used as a structural component of the vehicle. Today’s EV battery packs only serve one purpose: electrical energy storage. They do not carry structural loads during operation or absorb impact energy in the event of a collision. Stanford’s new battery design would improve upon existing technologies in four key areas: 1) structural capabilities, 2) damage and state sensing systems, 3) novel battery management and thermal regulation, and 4) high-capacity battery cells.

Slick Sheet: Project
EnZinc is developing a low-cost battery using 3D zinc microstructured sponge technology that could dramatically improve the rechargeability of zinc-based EV batteries. As a battery material, zinc is inexpensive and readily available, but presently unsuitable for long-term use in EVs. Current zinc based batteries offer limited cycle life due to the formation of tree-like internal structures (dendrites) that can short out the battery. To address this, EnZinc, in collaboration with the U.S.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) is developing a low-cost battery system that uses safe and inexpensive organic energy storage materials that can be pumped in and out of the system. NREL’s battery, known as a “liquid-phase organic redox system,” uses newly developed non-flammable compounds from biological sources to reduce cost while improving the amount of energy that can be stored. The battery’s unique construction will enable a 5-minute “fast-charge” and promote long life by allowing for the rapid replacement of liquid electrodes.

Slick Sheet: Project
Illinois Institute of Technology (IIT) is collaborating with Argonne National Laboratory to develop a rechargeable flow battery for EVs that uses a nanotechnology-based electrochemical liquid fuel that offers over 30 times the energy density of traditional electrolytes. Flow batteries, which store chemical energy in external tanks instead of within the battery container, are typically low in energy density and therefore not well suited for transportation.

Slick Sheet: Project
BASF is developing metal hydride alloys using new, low-cost metals for use in high-energy nickel-metal hydride (NiMH) batteries. Although NiMH batteries have been used in over 5 million vehicles with a proven record of long service life and abuse tolerance, their storage capacity is limited, which restricts driving range. BASF looks to develop a new NiMH design that will improve storage capacity and reduce fabrication costs through the use of inexpensive components. BASF will select new metals with a high energy storage capacity, then modify and optimize battery cell design.

Slick Sheet: Project
Oak Ridge National Laboratory (ORNL) is developing an electrolyte for use in EV batteries that changes from liquid to solid during collisions, eliminating the need for many of the safety components found in today’s batteries. Today’s batteries contain a flammable electrolyte and an expensive polymer separator to prevent electrical shorts—in an accident, the separator must prevent the battery positive and negative ends of the battery from touching each other and causing fires or other safety problems.

Slick Sheet: Project
Pennsylvania State University (Penn State) is using a new fabrication process to build load-bearing lithium-ion batteries that could be used as structural components of electric vehicles. Conventional batteries remain independent of a vehicle’s structure and require heavy protective components that reduce the energy to weight ratio of a vehicle. PowerPanels combine the structural components with a functional battery for an overall reduction in weight.

Slick Sheet: Project
Bettergy is developing an inexpensive battery that uses a novel combination of solid, non-flammable materials to hold a greater amount of energy for use in EVs. Conventional EV batteries are typically constructed using costly materials and require heavy, protective components to ensure safety. Consequently, these heavy battery systems require the car to expend more energy, leading to reduced driving range. Bettergy will research a battery design that utilizes low-cost energy storage materials to reduce costs, and solid, non-flammable components that will not leak to improve battery safety.