Slick Sheet: Project
Electric propulsion for air vehicles requires a high-power density and high-efficiency electric storage and power generation system that can operate at 35,000 feet in altitude to meet economic and environmental viability. Tennessee Technological University will combine a stack comprised of tubular Solid Oxide Fuel Cells (SOFCs) with a gas turbine combustor to address challenges faced in all electric propulsion-based aviation. The combined SOFC-combustor concept maximizes power density and efficiency while minimizing system complexity, weight, and cost.

Slick Sheet: Project
Small regional aircraft operations are challenged by high fuel cost, noise restrictions associated with small regional airports, and high maintenance cost of twin gas turbines. A battery/gas turbine hybrid series small regional aircraft, enabled by ULTRA COMPACT driven propulsors, addresses these issues, and could reduce passenger mile energy consumption.


Slick Sheet: Project
The CO-POWER project will enable a commercial narrow body electric aircraft by developing an ultra-efficient and lightweight fuel to electricity power generation system that includes the use of supercritical carbon dioxide (sCO2) as a working fluid. The proposed approach combines decades of knowledge in gas turbine engines with novel advances in additive manufacturing research and sCO2 power generation experience to increase the overall power system efficiency and its power density.

Slick Sheet: Project
Precision Combustion (PCI) is proposing an advanced energy storage and power generator design for meeting aggressive specific power and energy targets for all-electric propulsion of narrow-body commercial aircraft. Key enablers are an exceptionally power-dense solid oxide fuel cell system operating with energy-dense carbon neutral liquid fuels and a hybridized system architecture that maximizes component efficiencies for ultra-high system efficiency. PCI will validate compliance via component demonstration and develop a verifiable model for scale-up.

Slick Sheet: Project
Fuceltech proposes to develop an innovative low-cost, lightweight Energy Storage and Power Generation (ESPG) system for commercial aircraft. Fuceltech will develop a monopolar wound single fuel cell potentially as high as 10 kW rating and a novel stacking approach to deliver hundreds of kWs of power from a single small and lightweight stack. Fuceltech will use ethanol as a fuel and a reformer that delivers extremely low CO concentration in the reformate to the fuel cell.

Slick Sheet: Project
GE Research has proposed transformational material solutions to potentially enable a gas turbine blade alloy-coating system capable of operating at a turbine inlet temperature of 1800 °C for more than 30,000 hours.

Slick Sheet: Project
Pennsylvania State University (PSU) will develop an integrated computational and experimental framework for the design and manufacturing of ULtrahigh TEmperature Refractory Alloys (ULTERAs). PSU will generate alloy property data through high-throughput computational and machine learning models; design ULTERAs through a neural network inverse design approach; manufacture the designed alloys utilizing field assisted sintering technology and/or additive manufacturing; and demonstrate the performance through systematic characterization in collaboration with industry.

Slick Sheet: Project
A turbine engine's combustion environment can rapidly degrade high temperature alloys, which means they must be coated. This coating must be able to expand with the alloy so it adheres during temperature cycling, prevent combustion gases from permeating to the underlying alloy, and possess ultra-low thermal conductivity to protect the alloy from high surface temperatures. The University of Virginia will develop a novel coating for high temperature alloys that enables both a dramatic increase in upper use temperature for turbine engine blades and increased engine efficiency.

Slick Sheet: Project
Current Ni-based alloys used in turbine blade applications are operating at 1100°C, which is approximately 90% of their melting temperatures. Refractory alloys, such as niobium (Nb) alloys, can withstand higher temperatures.