Methane Leak Detection System

Default ARPA-E Project Image

Andover, Massachusetts
Project Term:
04/16/2015 - 12/31/2018

Technology Description:

Physical Sciences (PSI), in conjunction with Heath Consultants, Princeton University, the University of Houston, and Thorlabs Quantum Electronics, will miniaturize their laser-based Remote Methane Leak Detector (RMLD) and integrate it with PSI’s miniature unmanned aerial vehicle (UAV), known as the InstantEye, to create the RMLD-Sentry. The measurement system is planned to be fully autonomous, providing technical and cost advantages compared to manual leak detection methods. The team anticipates that the system would have the ability to measure ethane, as well as methane, which would allow it to distinguish biogenic from thermogenic sources. The RMLD-Sentry is planned to locate wellpad leak sources and quantify emission rates by periodically surveying the wellpad, circling the facility at a low altitude, and dynamically changing its flight pattern to focus in on leak sources. When not in the air, RMLD-Sentry would monitors emissions around the perimeter of the site. If methane is detected, the UAV would self-deploy and search the wellpad until the leak location is identified and flow rate is quantified using algorithms to be developed by the team. PSI’s design is anticipated to facilitate up to a 95% reduction in methane emissions at natural gas sites at an annualized cost of about $2,250 a year – a fraction of the cost of current systems that allow for continuous monitoring. In addition to requiring less manpower for continuous monitoring, the team expects to develop techniques to reduce manufacturing costs for the laser sources by applying economies of scale and streamlined manufacturing processes.

Potential Impact:

If successful, the PSI project will provide a widely deployable, cost-effective system that minimizes the manpower needed to monitor, and survey, and analyze potential methane emissions 24 hours a day.


Better methane detection technologies could improve the sustainability of domestic natural gas production and the safety of operations.


Enhanced detection sensors could enable greater mitigation of methane leakage and lead to an overall reduction in harmful methane emissions associated with natural gas development.


The system will lower the costs of methane detection by reducing manpower needs and by providing natural gas operators the tools to detect and prevent losing valuable product that could be sold to consumers.


ARPA-E Program Director:
Dr. Joseph King
Project Contact:
Dr. Michael Frish
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: