Slick Sheet: Project
To further the development of energy efficient integrated photonic networking technologies for datacenters and high performance computing, Ultra-low Loss Technologies (ULL) proposes to revolutionize chip-to-chip interconnects with massively parallel photonic channels based on photonic integrated circuit technology and spatial division multiplexing (SDM). This technology achieves between 10-1000X reduction in loss compared to competing technologies, which translates directly into lower power consumption.

Slick Sheet: Project
Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

Slick Sheet: Project
Cree is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels--eliminating the need for large transformers. Transformers "step up" the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually "stepped down" to usable voltages before it enters homes and businesses.

Slick Sheet: Project
SolarBridge Technologies is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system.

Slick Sheet: Project
The University of Colorado, Boulder (CU-Boulder) is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microconverters into individual solar panels to improve the efficiency of energy collection.

Slick Sheet: Project
PV inverters convert DC power generated by modules into usable AC power. Ideal Power's initial 30kW 94lb PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in Ideal Power's next-generation PV inverter. With these components, Ideal Power will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%.

Slick Sheet: Project
Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home.

Slick Sheet: Project
The Rutgers University SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid.

Slick Sheet: Project
The University of Missouri will develop neutron transmutation doping of GaN to fabricate uniform heavily doped n-type GaN wafers. GaN has long been proposed as a superior material for power electronic devices due to the intrinsic material advantages such as greater breakdown voltages and greater stability. Unfortunately, the fabrication of GaN wafers with uniform and high levels of dopants is challenging due to a lack of sufficient control during the existing crystal growth methods.

Slick Sheet: Project
The Research Foundation for the State University of New York (SUNY), on behalf of SUNY Polytechnic University, will develop innovative doping process technologies for gallium nitride (GaN) vertical power devices to realize the potential of GaN-based devices for future high efficiency, high power applications. SUNY Polytechnic's proposed research will focus on ion implantation to enable the creation of localized doping that is necessary for fabricating GaN vertical power devices.