PN-Junctions by Ion Implantation
Technology Description:
The Research Foundation for the State University of New York (SUNY), on behalf of SUNY Polytechnic University, will develop innovative doping process technologies for gallium nitride (GaN) vertical power devices to realize the potential of GaN-based devices for future high efficiency, high power applications. SUNY Polytechnic's proposed research will focus on ion implantation to enable the creation of localized doping that is necessary for fabricating GaN vertical power devices. Ion implantation is a doping process used in other semiconductor materials such as Si and GaAs but has been difficult to use in GaN due to the limited ability to perform high temperature heat treatments or anneals needed to activate the implanted dopants and repair the damage caused by implantation. The team will develop new annealing techniques to activate magnesium or silicon implanted in GaN to build p-n junctions, the principal building block of modern electronic components like transistors. High temperature anneals will be performed using an innovative gyrotron beam technique (a high-power vacuum tube that generates millimeter-length electromagnetic waves) and an aluminum nitride cap. Central to the team’s project is understanding the impact of implantation on the microstructural properties of the GaN material and effects on performance.
Potential Impact:
If successful, PNDIODES projects will enable further development of a new class of power converters suitable in a broad range of application areas including automotive, industrial, residential, transportation (rail & ship), aerospace, and utilities.