Slick Sheet: Project
The California Institute of Technology (Caltech) team is using first-principles reasoning (i.e. a mode of examination that begins with the most basic physical principles related to an issue and “builds up” from there) and advanced computational modeling to ascertain the underlying mechanisms that cause acoustic waves to affect catalytic reaction pathways. The team will first focus their efforts on two types of reactions for which there is strong experimental evidence that acoustic waves can enhance catalytic activity: Carbon Monoxide (CO) oxidation, and Ethanol decomposition.

Slick Sheet: Project
Ricardo will develop a detailed cost model for 10 key automotive components (e.g. chassis, powertrain, controls, etc.), analyzing the investment barriers at production volumes. Prior studies of innovative manufacturing processes and lightweight materials have used differing cost analysis assumptions, which makes comparison of these individual studies difficult. The backbone of the project will be a detailed economic model built on a set of common assumptions that will allow the root cause of cost barriers to be identified.

Slick Sheet: Project
The University of Maryland (UMD) will leverage recent advances in additive manufacturing to develop a next-generation air-cooled heat exchanger. The UMD team will assess the performance and cost of current state-of-the-art technology, including innovative manufacturing processes. The team will then utilize computer models to simulate a wide-range of novel heat exchanger designs that can radically enhance air-side heat transfer performance. The team will then physically build and test two 1 kilowatt (kW) prototype devices.

Slick Sheet: Project
Missouri S&T will combine a novel additive manufacturing technique, called ceramic on-demand extrusion, and ceramic fusion welding techniques to manufacture very high temperature heat exchangers for power cycles with intense heat sources. Enabling turbine operation at significantly higher inlet temperatures substantially increases power generation efficiency and reduces emissions and water consumption.

Slick Sheet: Project
The University of Maryland will design, manufacture, and test high-performance, compact heat exchangers for supercritical CO2 power cycles. Two innovative additive manufacturing processes will enable high performance. One facilitates up to 100 times higher deposition rate compared with regular laser powder additive manufacturing. The other enables crack-free additive manufacturing of an advanced nickel-based superalloy and has the potential to print features as fine as 20 micrometers.

Slick Sheet: Project
Michigan State University’s proposed technology is a highly scalable heat exchanger suited for high-efficiency power generation systems that use supercritical CO2 as a working fluid and operate at high temperature and high pressure. It features a plate-type heat exchanger that enables lower cost powder-based manufacturing. The approach includes powder compaction and sintering (powder metallurgy) integrated with laser-directed energy deposition additive manufacturing.

Slick Sheet: Project
Michigan Technological University will use advanced ceramic-based 3D printing technology to develop next-generation light, low-cost, ultra-compact, high-temperature, high-pressure (HTHP) heat exchangers. These will be able to operate at temperatures above 1100°C (2012°F) and at pressures above 80 bar (1160 psi). Current technologies cannot produce the high density, monolithic sintered silicon carbide (SSiC) material required for high temperature, high pressure recuperators.

Slick Sheet: Project
UTRC will develop a high temperature, high strength, low cost glass-ceramic matrix composite heat exchanger capable of a long operational life in a range of harsh environments with temperatures and pressures as high as 1100°C (2012°F) and 250 bar (3626 psi). UTRC designed its Counterflow Honeycomb Heat Exchanger (CH-HX) configuration with an oxidation-resistant material developed initially for gas turbine applications. Its core feature is a joint-free, 3D-woven assembly of webbed tubes and cylindrical shapes to reduce stress and simplify manufacturing.

Slick Sheet: Project
UCLA will develop an extreme-condition heat exchanger technology targeted to ultra-high efficiency hybrid aviation power cycles. The heat exchanger will operate at 50 kW (thermal) at supercritical CO2 pressures of 80 and 250 bar (1160 and 3626 psi) in hot and cold streams and at a hot-stream inlet temperature of 800°C (1472°F). A metallic superalloy capable of withstanding high temperature and pressure will be used to fabricate a shell-and-tube-based design supplemented with 3D-printed tube augmentations.

Slick Sheet: Project
International Mezzo Technologies will design, manufacture, and test a compact, nickel-based superalloy supercritical carbon dioxide (sCO2) recuperator (a type of heat exchanger). The recuperator will incorporate laser-welded micro tubes and function at 800°C (1,472°F) and 275 bar (3,989 psi). Currently, the cost of recuperators for power systems operating in these conditions is prohibitive. Laser welding micro tubes offers a low-cost approach to fabricating heat exchangers, which could increase the economic competitiveness of sCO2 power cycles.