Slick Sheet: Project
Maxion Technologies is partnering with Thorlabs Quantum Electronics (TQE), Praevium Research, and Rice University to develop a low cost, tunable, mid-infrared (mid-IR) laser source to be used in systems for detecting and measuring methane emissions. The new architecture is planned to reduce the cost of lasers capable of targeting methane optical absorption lines near 3.3 microns, enabling the development of affordable, high sensitivity sensors.

Slick Sheet: Project
IBM’s T.J Watson Research Center is working in conjunction with Harvard University and Princeton University to develop an energy-efficient, self-organizing mesh network to gather data over a distributed methane measurement system. Data will be passed to a cloud-based analytics system using custom models to quantify the amount and rate of methane leakage. Additionally, IBM is developing new, low-cost optical sensors that will use tunable diode laser absorption spectroscopy (TDLAS) for methane detection.

Slick Sheet: Project
Bridger Photonics plans to build a mobile methane sensing system capable of surveying a 10 meter by 10 meter well platform in just over five minutes with precision that exceeds existing technologies used for large-scale monitoring. Bridger’s complete light-detection and ranging (LiDAR) remote sensing system will use a novel, near-infrared fiber laser amplifier in a system mounted on a ground vehicle or an unmanned aerial vehicle (UAV), which can be programmed to survey multiple wellpads a day.

Slick Sheet: Project
The University of Colorado-Boulder (CU-Boulder) will team up with the National Institute of Standards and Technology (NIST) and the Cooperative Institute for Research in Environmental Sciences (a partnership between CU-Boulder and the National Oceanic and Atmospheric Administration) to develop a reduced-cost, dual frequency comb spectrometer. The frequency comb would consist of 105 evenly spaced, sharp, single frequency laser lines covering a broad wavelength range that includes the unique absorption signatures of natural gas constituents like methane.

Slick Sheet: Project
Rebellion Photonics plans to develop portable methane gas cloud imagers that can wirelessly transmit real-time data to a cloud-based computing service. This would allow data on the concentration, leak rate, location, and total emissions of methane to be streamed to a mobile device, like an iPad, smartphone, or Google Glass. The infrared imaging spectrometers will leverage snapshot spectral imaging technology to provide multiple bands of spectral information for each pixel in the image.

Slick Sheet: Project
Physical Sciences (PSI), in conjunction with Heath Consultants, Princeton University, the University of Houston, and Thorlabs Quantum Electronics, will miniaturize their laser-based Remote Methane Leak Detector (RMLD) and integrate it with PSI’s miniature unmanned aerial vehicle (UAV), known as the InstantEye, to create the RMLD-Sentry. The measurement system is planned to be fully autonomous, providing technical and cost advantages compared to manual leak detection methods.

Slick Sheet: Project
Palo Alto Research Center (PARC) will work with BP and NASA’s Ames Research Center to combine Xerox’s low-cost print manufacturing and NASA’s gas-sensing technologies to develop printable sensing arrays that will be integrated into a cost-effective, highly sensitive methane detection system. The system will be based on sensor array foils containing multiple printed carbon nanotube (CNT) sensors and supporting electronics. Each sensor element will be modified with dopants, coatings, or nanoparticles such that it responds differently to different gases.

Slick Sheet: Project
LI-COR Biosciences is working with Colorado State University (CSU) and Gener8 to develop cost-effective, highly sensitive optical methane sensors that can be integrated into mobile or stationary methane monitoring systems. Their laser-based sensor utilizes optical cavity techniques, which provide long path lengths and high methane sensitivity and selectivity, but previously have been costly. The team will employ a novel sensor design developed in parallel with advanced manufacturing techniques to enable a substantial cost reduction.

Slick Sheet: Project
General Electric (GE) Global Research will partner with Virginia Tech to design, fabricate, and test a novel, hollow core, microstructured optical fiber for long path-length transmission of infrared radiation at methane absorption wavelengths. GE will drill micrometer-sized side-holes to allow gases to penetrate into the hollow core. The team will use a combination of techniques to quantify and localize the methane in the hollow core.

Slick Sheet: Project
Duke University, in conjunction with its partners, will build a coded aperture miniature mass spectrometer environmental sensor (CAMMS-ES) for use in a methane monitoring system. The team will also develop search, location, and characterization algorithms. Duke will apply its recent innovations in mass spectrometers to increase the throughput of the spectrometer, providing continuous sampling without diminishing its resolution by integrating spatially coded apertures and corresponding reconstruction algorithms.