Slick Sheet: Project
Michigan Technological University (MTU), in partnership with General Motors (GM), will develop, validate, and demonstrate a fleet of connected electric vehicles and a mobile cloud-connected computing center. The project will integrate advanced controls with connected and automated vehicle functions and enable: eco-routing, efficient approach and departure from traffic signals and cooperative driving between multiple vehicles, including speed harmonization.

Slick Sheet: Project
The University of Minnesota (UMN) will lead a team to develop technology to improve the fuel efficiency of delivery vehicles through real-time vehicle dynamic and powertrain control optimization using two-way vehicle-to-cloud (V2C) connectivity. The effort will lead to greater than 20% fuel economy improvement of a baseline 2016 E-GEN series hybrid delivery vehicle operating as part of the United Parcel Service (UPS) fleet. Large delivery vehicle fleet operators such as UPS currently use analytics to assign routes in such a way to minimize fuel consumption.

Slick Sheet: Project
The University of Michigan will develop an integrated power and thermal management system for connected and automated vehicles (iPTM-CAV), with the goal of achieving a 20% improvement in energy consumption. This increase will arise from predicting the traffic environment with transportation analytics, optimizing vehicle speed and load profiles with vehicle-to-everything (V2X) communication, coordinating power and thermal control systems with intelligent algorithms, and optimizing powertrain operation in real time.

Slick Sheet: Project
The University of Delaware (UD) will develop and implement a control technology aimed at maximizing the energy efficiency of a 2016 Audi A3 plug-in hybrid vehicle by more than 20% without reducing the vehicle's drivability, performance, emissions, and safety. The technology will use connectivity between vehicles and infrastructure to co-optimize vehicle dynamic and powertrain controls. It will compute optimal routing for desired destinations while bypassing bottlenecks, accidents, special events, and other conditions that affect traffic flow.

Slick Sheet: Project
General Motors will lead a team to develop "InfoRich" vehicle technologies that will combine advances in vehicle dynamic and powertrain control technologies with recent vehicle connectivity and automation technologies. The result will be a light duty gasoline vehicle that demonstrates greater than 20% fuel consumption reduction over current production vehicles while meeting all safety and exhaust emissions standards.

Slick Sheet: Project
Southwest Research Institute (SwRI) will develop control strategies and technology to improve the energy efficiency of a 2017 Toyota Prius Prime plug-in hybrid electric vehicle through energy-conscious path planning and powertrain control. The team will modify the vehicle to take advantage of connected, autonomous vehicle information streams and develop systems that co-optimize the control of vehicle speed and engine power to minimize energy consumption, maintain safety, and deliver expected performance.

Slick Sheet: Project
Purdue University will develop new bio-inspired ultrahigh strength-to-weight ratio materials. To do so, they will develop porous metal replicas of diatom frustules, which are hollow silica (glass) structures that have evolved over millions of years to possess high resistance to being crushed by predators. They are targeting structures possessing high strengths (> 350 MPa or 50,763 PSI) and low densities (<1000 kg/m3), which they will evaluate using microscale mechanical tests and simulations.

Slick Sheet: Project
Inventev is developing a proof-of-concept for a commercially viable generator system that is integrated with a truck transmission. The project will involve the design and fabrication of transmission and power electronics subsystems, integration of those systems into a Ford F550 chassis-cab truck, and conversion of the standard gasoline engine to a low-pressure natural gas engine. The project aims to create a 120kW low-cost, low-emission mobile power generator using natural gas with a cost target of 6-to-7 cents per kilowatt-hour.

Press Releases
Today, the U.S. Department of Energy’s (DOE’s) Advanced Research Projects Agency-Energy (ARPA-E) announced up to $55 million in funding for two programs to support the development of low-cost electric aviation engine technology and powertrain systems.

Impact Sheet
A BRAND NEW CLASS OF LIGHT-DUTY VEHICLE ENGINES UPDATED: November 30, 2017PROJECT TITLE: Gasoline Compression Ignition Light Duty Multicylinder Opposed Piston Engine DemonstrationPROGRAM: OPEN 2015AWARD: $9,002,985TEAM: Achates Power, Inc.(Lead); Argonne National Laboratory; Delphi PowertrainTERM: April 2016 – November 2018PRINCIPAL INVESTIGATOR (PI): Fabien Redon