Displaying 501 - 550 of 1479

Status: CANCELLED
State: NC
Project Term: -
Program: SWITCHES
Award: $3,224,993

Kyma Technologies

GaN Substrate Technology

Kyma Technologies will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed’s structural quality and improving its purity.


Status: ALUMNI
State: IL
Project Term: -
Program: REMOTE
Award: $6,896,121

LanzaTech

Bioreactor with Improved Methane Transfer

LanzaTech will combine methane fermentation expertise, experimental bioreactor characterization, as well as advanced simulation and modeling to develop a novel gas fermentation system that can significantly improve gas to liquid mass transfer, or the rate at which methane gas is delivered to a biocatalyst. This unique bioreactor concept seeks to efficiently transfer methane to microbial biocatalysts by reducing the energy demand required for high transfer rates. Although methane is a flammable gas, the new technology also maintains the safe operation necessary for a small-scale conversion…


Status: ACTIVE
State: IL
Project Term: -
Program: ECOSynBio
Award: $4,160,263

LanzaTech

Carbon-Negative Chemical Production Platform

LanzaTech will create transformative technology to directly convert CO2 to ethanol at 100% carbon efficiency with technical assistance from the University of Michigan and Oak Ridge National Laboratory. The team will develop a novel biocatalyst that leverages affordable, renewable hydrogen (H2) to capture and fix CO2 directly into ethanol, a biofuel and feedstock for valuable products. The core inputs are carbon-free renewable energy, water, and CO2. The alcohol-to-jet process developed by Pacific Northwest National Laboratory and LanzaTech Gas fermentation can leverage renewable H2 to…


Status: ALUMNI
State: CA
Project Term: -
Program: ALPHA
Award: $2,436,685

Lawrence Berkeley National Laboratory (LBNL)

MEMS Based Drivers For Fusion

LBNL, in coordination with Cornell University, will develop a driver for magneto-inertial fusion based on ion beam technology that can be manufactured with low-cost, scalable methods. Ion beams are commonly used in research laboratories and manufacturing, but currently available technology cannot deliver the required beam intensities at low enough cost to drive an economical fusion reactor. LBNL will take advantage of microelectromechanical (MEMS) technology to develop a design consisting of thousands of mini ion “beamlets” densely packed on silicon wafers – up to thousands of beamlets per 4…


Status: ALUMNI
State: CA
Project Term: -
Program: DIFFERENTIATE
Award: $1,800,000

Lawrence Berkeley National Laboratory (LBNL)

Deep Learning and Natural Language Processing for Accelerated Inverse Design of Optical Metamaterials

Over the past 50 years, progress in optical metamaterial device design has led to the manipulation of light over a wide range of wavelengths spanning the ultraviolet to the far infrared, resulting in technological advancements such as selective radiative absorbers for solar energy and daytime passive cooling using deep space. Further advances in optical metamaterial devices could enable increased energy efficiency, reduced national primary energy consumption, inexpensive long duration energy storage, and next generation solid-state heat engines. Lawrence Berkley National Laboratory (LBNL)…


Status: ALUMNI
State: CA
Project Term: -
Program: Electrofuels
Award: $3,439,506

Lawrence Berkeley National Laboratory (LBNL)

Turning Bacteria into Biofuel

Lawrence Berkeley National Laboratory (LBNL) is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism's access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts…


Status: ALUMNI
State: CA
Project Term: -
Program: GRIDS
Award: $1,900,136

Lawrence Berkeley National Laboratory (LBNL)

Hydrogen-Bromine Flow Battery

Lawrence Berkeley National Laboratory (LBNL) is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer, and cost less than today's lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine…


Status: ALUMNI
State: CA
Project Term: -
Program: IDEAS
Award: $500,000

Lawrence Berkeley National Laboratory (LBNL)

Metal-Supported SOFC for Vehicles

Lawrence Berkeley National Laboratory (LBNL) will develop a high power density, rapid-start, metal-supported solid oxide fuel cell (MS-SOFC), as part of a fuel cell hybrid vehicle system that would use liquid bio-ethanol fuel. In this concept, the SOFC would accept hydrogen fuel derived from on-board processing of the bio-ethanol and air, producing electricity to charge an on-board battery and operate the motor. The project aims to develop and demonstrate cell-level MS-SOFC technology providing unprecedented high power density and rapid start capability initially using hydrogen and simulated…


Status: ALUMNI
State: CA
Project Term: -
Program: OPEN 2018
Award: $3,170,000

Lawrence Berkeley National Laboratory (LBNL)

Metal-Supported SOFCs for Ethanol-Fueled Vehicles

Lawrence Berkeley National Laboratory (LBNL) is developing a metal-supported SOFC (MS-SOFC) stack that produces electricity from an ethanol-water blend at high efficiency and energy density. This technology will enable light- to medium-duty hybrid passenger EVs to operate at a long range, with higher efficiency than gasoline vehicles and lower greenhouse gas (GHG) emissions than current vehicles. LBNL’s MS-SOFCs are mechanically rugged: they can heat from room temperature to their approximately 700°C (1292 °F) operating temperature within a few minutes without cracking and tolerate rapid…


Status: ALUMNI
State: CA
Project Term: -
Program: OPEN 2018
Award: $4,872,671

Lawrence Berkeley National Laboratory (LBNL)

MEMS RF Accelerators For Nuclear Energy and Advanced Manufacturing

LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers. Ions will be injected and accelerated…


Status: ALUMNI
State: CA
Project Term: -
Program: PETRO
Award: $4,836,807

Lawrence Berkeley National Laboratory (LBNL)

Oil from Tobacco Leaves

Lawrence Berkeley National Laboratory (LBNL) is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the…


Status: ALUMNI
State: CA
Project Term: -
Program: REMOTE
Award: $3,500,000

Lawrence Berkeley National Laboratory (LBNL)

Enzymes for Methane Conversion

Lawrence Berkeley National Laboratory (LBNL) is genetically engineering a bacterium called Methylococcus in order to produce an enzyme that binds methane with a common fuel precursor to create a liquid fuel. This process relies on methylation, a reaction that requires no oxygen or energy inputs but has never been applied to methane conversion.” First, LBNL will construct a unique enzyme called a “PEP methylase” from an existing enzyme. The team will then bioengineer new metabolic pathways for assimilating methane and conversion to liquid fuels.


Status: ALUMNI
State: CA
Project Term: -
Program: ROOTS
Award: $2,706,657

Lawrence Berkeley National Laboratory (LBNL)

Imaging and Modeling Toolbox for Roots

Lawrence Berkeley National Laboratory (LBNL) will develop an imaging-modeling toolbox to aid in the development of more efficient crops at field scales. The approach is based on a root phenotyping method called Tomographic Electrical Rhizosphere Imaging (TERI). TERI works by applying a small electrical signal to a plant, then measuring the impedance responses through the roots and correlating those responses to root and soil properties. Key target traits of the LBNL project include root mass, root surface area, rooting depth, root distribution in soil, and soil moisture content and texture.…


Status: ALUMNI
State: CA
Project Term: -
Program: ROOTS
Award: $2,299,999

Lawrence Berkeley National Laboratory (LBNL)

Associated Particle Imaging for Soil Carbon

Lawrence Berkeley National Laboratory (LBNL) will develop a field-deployable instrument that can measure the distribution of carbon in soil using neutron scattering techniques. The system will use the Associated Particle Imaging (API) technique to determine the three-dimensional carbon distribution with a spatial resolution on the order of several centimeters. A compact, portable neutron generator emits neutrons that excite carbon and other nuclei. The excited carbon isotopes emit gamma rays that can be detected above the ground with spectroscopic detectors and used as a proxy to estimate the…


Status: ACTIVE
State: CA
Project Term: -
Program: Exploratory Topics
Award: $1,000,000

Lawrence Berkeley National Laboratory (LBNL)

CARBON STANDARD: Carbon Accounting to Redefine Biofeedstock Operation Normality using Sensing Technology Assisted by Numerical and Data Analytics for Reliable Detection

The Lawrence Berkeley National Lab (LBNL) CARBON STANDARD team will develop advanced machine learning tools for a cross-scale quantification of carbon intensity (CI) during biofuel feedstock production. LBL will act as the integrator across all SMARTFARM teams to analyze complex, multi-physics, and multi-scale datasets, and develop scaling approaches across the variety of CI monitoring fields.


Status: ACTIVE
State: CA
Project Term: -
Program: Exploratory Topics
Award: $1,498,003

Lawrence Berkeley National Laboratory (LBNL)

Quantifying Nuclear Reactions in Metal Hydrides at Low Energies

The Lawrence Berkeley National Laboratory (LBNL) team proposes to probe for LENR at external excitation energies below 500 eV, systematically varying materials and conditions while monitoring nuclear event rates with a suite of diagnostics. The team will draw from knowledge based on previous work using higher energy ion beams as an external excitation source for LENR on metal hydrides electrochemically loaded with deuterium.


Status: Selected
State: TBD
Project Term: TBD
Program: Exploratory Topics
Award: TBD

Lawrence Berkeley National Laboratory (LBNL)

Orange Hydrogen from Catalytic Low Temperature Serpentinization

Lawrence Berkeley National Laboratory is developing methods to understand the chemical mechanisms responsible for stimulating geologic hydrogen at low temperatures. Serpentinization rates are faster at higher temperatures, but the natural environment in future hypothetical geologic hydrogen production sites would have lower temperatures, meaning that reaction rates would not be as economical. The team is leveraging computation and experimental chemistry to determine how catalysts or other chemical approaches affect the formation of geologic hydrogen in low temperature environments.


Status: Selected
State: TBD
Project Term: TBD
Program: Exploratory Topics
Award: TBD

Lawrence Berkeley National Laboratory (LBNL)

Cyclic Injection for Commercial Seismic-Safe Geologic H2 Production

Lawrence Berkley National Laboratory is developing a cyclic injection strategy to create fractures, stimulate geologic hydrogen production, and ultimately transport the produced hydrogen back to the surface. The approach involves multiscale numerical modeling, laboratory tests, and field characterization to develop and test the proposed technology using rock samples from Montana and other sites. Through high pressure, high temperature testing, the system will be optimized for hydrogen flow and maximum extraction.


Status: ALUMNI
State: CA
Project Term: -
Program: AMPED
Award: $1,906,606

Lawrence Livermore National Laboratory (LLNL)

Wireless Sensor System for Battery Packs

Lawrence Livermore National Laboratory (LLNL) is developing a wireless sensor system to improve the safety and reliability of lithium-ion (Li-Ion) battery systems by monitoring key operating parameters of Li-Ion cells and battery packs. This system can be used to control battery operation and provide early indicators of battery failure. LLNL's design will monitor every cell within a large Li-Ion battery pack without the need for large bundles of cables to carry sensor signals to the battery management system. This wireless sensor network will dramatically reduce system cost, improve…


Status: ALUMNI
State: CA
Project Term: -
Program: IMPACCT
Award: $3,611,376

Lawrence Livermore National Laboratory (LLNL)

Synthetic Catalysts for CO2 Storage

Lawrence Livermore National Laboratory (LLNL) is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in…


Status: ALUMNI
State: CA
Project Term: -
Program: PNDIODES
Award: $500,000

Lawrence Livermore National Laboratory (LLNL)

Magnesium Diffusion Doping of GaN

Livermore National Laboratory (LLNL) will advance GaN device processing knowledge to enable production of GaN devices with higher speed and power at a lower cost. Using a selective area p-type doping process to move the device architecture from a lateral to a vertical configuration makes the lower cost possible. LLNL has previously demonstrated solid-state diffusion of magnesium (Mg) into GaN at temperatures under 1000ºC through a Gallidation Assisted Impurity Diffusion (GAID) process. In the GAID process, an Mg source layer is deposited in contact with the GaN followed by a capping layer of…


Status: ALUMNI
State: CA
Project Term: -
Program: Exploratory Topics
Award: $1,326,530

Lawrence Livermore National Laboratory (LLNL)

Absolute Neutron Rate Measurement and Non-thermal/Thermonuclear Fusion Differentiation

Design, build and operate a robust, portable neutron detection system that will serve as a powerful diagnostic tool in support of efforts to transform fusion energy. The tool’s design will allow for flexible, portable experimental setup, enabling it to provide effective diagnostic measurements at multiple fusion facilities.


Status: ALUMNI
State: CA
Project Term: -
Program: Exploratory Topics
Award: $1,300,000

Lawrence Livermore National Laboratory (LLNL)

Next Generation High-temperature Optical Fibers

Develop a novel process for applying metallic coatings to optical fibers that will allow the fabrication of distributed optical sensors for high-temperature geothermal wells and explore quantum sensing techniques to dramatically increase sensitivities. This new optical technology will fill an important technology gap to enable distributed sensing in high-temperature enhanced geothermal system wells and help optimize production.


Status: ALUMNI
State: CA
Project Term: -
Program: Exploratory Topics
Award: $2,000,000

Lawrence Livermore National Laboratory (LLNL)

A Portable Optical Thomson Scattering System

Implement an optical Thomson scattering diagnostic to help constrain the values of the electron density and temperature, as well as ion temperature. This approach could transform the understanding of the underlying physics of each fusion concept by providing local, time resolved measurements of plasma conditions.


Status: ACTIVE
State: CA
Project Term: -
Program: ULTRAFAST
Award: $3,000,000

Lawrence Livermore National Laboratory (LLNL)

Diamond Optically Gated Junction Field Effect Transistor

Lawrence Livermore National Laboratory is developing a semiconductor transistor device to enable future grid control systems to accommodate higher voltage and current than conventional devices. The team seeks to build a high-power diamond optoelectronic device that has the inherent advantages of diamond’s superior properties relative to other wide- and ultrawide-bandgap semiconductor materials. Three of the proposed devices in series would be able to support more than 6 kilovolts, almost double that of existing wide-bandgap commercial options.


Status: Selected
State: TBD
Project Term: TBD
Program: Exploratory Topics
Award: TBD

Lawrence Livermore National Laboratory (LLNL)

Enhanced Hydrogen Production from Subsurface Mineral Deposits by Organic Acids and Catalyst Stimulation with Novel Optical Fiber Monitoring (Fiber-OACS)

Lawrence Livermore National Laboratory (LLNL) is developing chemical stimulants to increase the rate of hydrogen production by accelerating the breakdown of minerals. LLNL is targeting short-chain organic acids that can both break down minerals while also recovering other critical minerals. The team is also evaluating whether other transition metals could catalyze geologic hydrogen production.


Status: ALUMNI
State: DE
Project Term: -
Program: Exploratory Topics
Award: $500,000

Lectrolyst

Transformation of Carbon Emissions to High-Value Products through a Two-Step Electrochemical Platform

Carbon dioxide utilization can help reduce carbon emissions, but gaps remain in the value chain from initial capture to high-value products. Lectrolyst LLC will develop an electrochemical platform centered on selective two-step conversion of CO2 to acetic acid and ethylene, to fill this need. Preliminary life cycle assessment and techno-economic analysis indicate ~200 million metric tons of CO2 emissions reduction when targeting these products at global scale while competing on a cost basis without considering carbon pricing. Development of this platform is intended to lead to full…


Status: ALUMNI
State: PA
Project Term: -
Program: OPEN 2009
Award: $560,808

Lehigh University

CO2 Capture Using Electric Fields

Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University's approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now…


Status: ACTIVE
State: PA
Project Term: -
Program: PERFORM
Award: $2,500,623

Lehigh University

Application of Banking Scoring and Rating for Coherent Risk Measures in Electricity Systems

The Lehigh University team will develop a framework for asset and system risk management that can be incorporated into current electricity system operations to improve economic efficiency through the establishment of an electric assets risk bureau. Discrepancies exist between the power scheduled by a system operator and actual power generated and/or consumed. These discrepancies—exacerbated by unplanned contingencies (e.g., variable renewable energy sources, natural disasters)—are caused by multiple factors, including the different financial, environmental, and risk preferences of power…


Status: ALUMNI
State: NE
Project Term: -
Program: MONITOR
Award: $2,849,950

LI-COR Biosciences

Optical Sensors for Methane Detection

LI-COR Biosciences is working with Colorado State University (CSU) and Gener8 to develop cost-effective, highly sensitive optical methane sensors that can be integrated into mobile or stationary methane monitoring systems. Their laser-based sensor utilizes optical cavity techniques, which provide long path lengths and high methane sensitivity and selectivity, but previously have been costly. The team will employ a novel sensor design developed in parallel with advanced manufacturing techniques to enable a substantial cost reduction. The sensors are expected to provide exceptional long-term…


Status: Selected
State: TBD
Project Term: TBD
Program: ROSIE
Award: TBD

Limelight Steel

Laser Furnace for Reduction of Iron Ore to Iron Metal

Limelight Steel is developing a laser furnace to convert iron ore into iron metal without emitting carbon dioxide at lower cost than a blast furnace. The process leverages semiconductor laser diodes, which enable new temperature and pressure ranges to reduce high- and low-grade iron ore fines into molten iron metal. The approach eliminates the need to sinter or pelletize iron ore for traditional ironmaking furnaces. Limelight estimates that their technology would reduce energy consumption of steelmaking by 46% and emissions by 81%.


Status: ALUMNI
State: CT
Project Term: -
Program: FLECCS
Award: $479,965

Linde

Process Integration & Optimization of an NGCC Power Plant W/Co2 Capture, Hydrogen Production & Storage

Linde Gas aims to develop a system for natural gas-fired power plants using post-combustion carbon capture and hydrogen technologies. This unique process produces and stores hydrogen when it is not profitable for the power plant with carbon capture to export electricity to the grid. The process then uses that stored hydrogen to offset natural gas fuel consumption when electricity prices are high. Integrating an electrolyzer for hydrogen production and tanks for hydrogen storage with a natural gas power plant that has carbon capture will enable the plant to operate under more steady-state…


Status: CANCELLED
State: MA
Project Term: -
Program: SHARKS
Award: $3,677,507

Littoral Power Systems

Control Co-design and Co-optimization of a Transformational Cost-Efficient Hydrokinetic Energy Turbine System

To advance in-current marine and riverine hydrokinetic energy conversion through a step change in levelized cost of energy, Littoral Power Systems, Inc., and its partners propose to design, fabricate, and test a novel in-current hydrokinetic energy turbine device that imposes no net torque on the mooring. It is a submersed buoyant vehicle on a single flexible tether that flies a turbine up in the water column. The team will use a control co-design engineering framework to characterize and numerically optimize the system for minimized LCOE through three parallel activities: (1) minimize and…


Status: ALUMNI
State: CA
Project Term: -
Program: Exploratory Topics
Award: $500,000

Living Carbon

Increasing Carbon Drawdown and Retention in Terrestrial Biomass using Bioengineered Trees

The rate of photosynthetic assimilation and decay of lignocellulosic biomass currently limits carbon drawdown and retention in terrestrial biomass. Living Carbon is developing innovative methods to reduce the susceptibility of vegetative biomass to decay by lignin-eating fungi, thereby reducing the rate of release of carbon dioxide back to the atmosphere through fungal respiration. Living Carbon’s trees resist fungal decay through absorbing small amounts of nickel and copper from the soil and depositing these metals in their xylem (wood) tissue as they grow, which offers a biological strategy…


Status: ALUMNI
State: CA
Project Term: -
Program: Exploratory Topics
Award: $1,100,755

Lixivia

Using Bio-inspired Lixiviants to Selectively Extract Valuable Metals from Municipal Solid Waste Incinerator Ash

Current environmental, capital equipment, and reagent unit costs of metal extraction and refinement, including from waste minerals, are high. A technical solution will increase the domestic supply of metals as well as reduce consumer cost of downstream power and new technology devices. Lixivia Inc. proposes to use bio-inspired molecules, complemented by conventional chemical reagents to reduce reagent costs, the environmental burden of using such reagents, and the capital equipment needed to produce metals from MSWI ash. Simultaneously, the project will introduce step-change capabilities in…


Status: ALUMNI
State: NM
Project Term: -
Program: ALPHA
Award: $6,627,332

Los Alamos National Laboratory (LANL)

Plasma Liners For Fusion

Los Alamos National Laboratory (LANL), along with HyperV Technologies and other partners, will design and build a new driver technology that is non-destructive, allowing for more rapid experimentation and progress toward economical fusion power. The team will use a spherical array of plasma guns to produce supersonic jets that merge to create an imploding plasma liner. Because the guns are located several meters away from the fusion burn region (i.e., they constitute a “standoff driver”), the reactor components should not be damaged by repeated experiments. This will allow the team to perform…


Status: ALUMNI
State: NM
Project Term: -
Program: BETHE
Award: $425,000

Los Alamos National Laboratory (LANL)

Electromagnetic and Particle Diagnostics for Transformative Fusion-Energy Concepts

Los Alamos National Laboratory and its partner, the University of Nevada-Reno, will provide visible spectroscopy and soft x-ray imaging diagnostics to characterize the performance of a number of lower-cost, potentially transformative fusion-energy concepts. Multi-chord visible spectroscopy measurements will enable the identification of impurities and their spatial and temporal variation in the plasmas, which is essential for understanding plasma composition and plasma conditions. A state-of-the-art, solid-state X-ray imager, the Adaptive Gain Integrating Pixel Detector (AGIPD), will be used…


Status: ACTIVE
State: NM
Project Term: -
Program: BETHE
Award: $4,618,000

Los Alamos National Laboratory (LANL)

Target Formation and Integrated Experiments for Plasma-Jet Driven Magneto-Inertial Fusion

Los Alamos National Laboratory (LANL) will lead a team that will test an innovative approach to controlled fusion energy production: plasma-jet driven magneto-inertial fusion (PJMIF). PJMIF uses a spherical array of plasma guns to produce an imploding supersonic plasma shell, or “liner,” which inertially compresses and heats a pre-injected magnetized plasma “target” in a bid to access the conditions for thermonuclear fusion. LANL will develop a magnetized target plasma for the approach at a smaller scale than would be needed for a reactor. The team will perform first integrated liner-on-…


Status: ALUMNI
State: NM
Project Term: -
Program: OPEN 2018
Award: $2,900,000

Los Alamos National Laboratory (LANL)

Stable Diacid Coordinated Quaternary Ammonium Polymers for 80-150°C Fuel Cells

Los Alamos National Laboratory will develop proton exchange membrane (PEM) fuel cells for light-duty vehicles that operate on hydrogen or dimethyl ether (DME) fuel in the temperature range of 80-230°C (176-446°F) without first warming or humidifying the incoming fuel stream. The team’s concept uses a new polymer-based PEM that will provide high conductivity across a wide temperature range and can operate without humidification, simplifying the system components necessary to keep the cell running effectively, streamlining design, and reducing system size and costs, which are crucial for light…


Status: ACTIVE
State: NM
Project Term: -
Program: OPEN 2018
Award: $4,420,064

Los Alamos National Laboratory (LANL)

Advanced Manufacturing of Embedded Heat Pipe Nuclear Hybrid Reactor

Los Alamos National Laboratory will develop a scalable, compact, high-temperature, heat pipe reactor (HPR) to provide heat and electricity to remote areas. A 15MWth HPR could be built on-site in less than a month and self-regulate its power to plug into microgrids. The team will use high temperature materials via advanced manufacturing to reduce costs, and further cost reduction will be achieved from novel sensors embedded in the reactor core for continuous monitoring, reducing the number of operational staff needed.


Status: ALUMNI
State: NM
Project Term: -
Program: Exploratory Topics
Award: $630,000

Los Alamos National Laboratory (LANL)

Portable Neutron and Soft X-Ray Diagnostics for Transformative Fusion-Energy Concepts

Develop a portable suite of proven, absolutely calibrated neutron and soft x-ray diagnostics to characterize the performance of a number of fusion energy concepts. The tool will be able to determine neutron yields as low as 105 neutrons per pulse, identify hot regions and structures in the plasma, and make estimates of the core plasma electron temperature.


Status: ALUMNI
State: NM
Project Term: -
Program: DIFFERENTIATE
Award: $897,577

Los Alamos National Laboratory (LANL)

Machine Learning-Based Well Design to Enhance Unconventional Energy Production

Los Alamos National Laboratory (LANL) seeks to increase the efficiency with which oil and gas are extracted from unconventional reservoirs while reducing the environmental impact of such processes. Current hydrofracturing-enabled extraction efficiencies are only 5 to 10%. LANL seeks to improve upon these levels by developing physics-informed machine learning (ML) based models from field data to discover effective well design characteristics. LANL will use its ML framework, which is based on recent advances in ML, differentiable programming, and cloud computing, to extract actionable…


Status: Selected
State: TBD
Project Term: -
Program: Exploratory Topics
Award: $345,000

Los Alamos National Laboratory (LANL)

Geochemical and Hydromechanical Stimulation for Reaction Acceleration (GeoHydRA) of Serpentinization for In Situ Hydrogen Production

Los Alamos National Laboratory (LANL) is developing a method to increase the production rate of stimulated hydrogen through promoting hierarchical cracks in reactant rock formations. The technical approach includes laboratory experiments and numerical modeling to combine and couple geochemistry, geomechanics, fracture mechanics, and porous media flow. The proposed work would enhance the injection design and fluid chemistry to ensure that hydrogen production rates do not decrease quickly over time, as prior laboratory experiments and numerical modeling have suggested.


Status: ALUMNI
State: VA
Project Term: -
Program: FLECCS
Award: $989,660

Luna Innovations

Flexible FlueCO2

Luna Innovations is developing FlueCO2, a process that enables traditional power generators to respond to increased VRE while reducing greenhouse gas emissions. FlueCO2 is a combined membrane and gas processing technology that integrates into existing natural gas combined cycle power plants and actively removes CO2 from the exhaust gas. The membrane separates CO2 at unrivaled rates using steam generated within the plant. The CO2-rich steam leaving the membranes is processed further to remove the water so it can be regenerated into steam at the most energy efficient conditions. Remaining CO2…


Status: ALUMNI
State: CA
Project Term: -
Program: ALPHA
Award: $4,598,239

Magneto-Inertial Fusion Technologies, Inc. (MIFTI)

Staged Z-Pinch Target For Fusion

MIFTI is developing a new version of the Staged Z-Pinch (SZP) fusion concept that reduces instabilities in the fusion plasma, allowing the plasma to persist for longer periods of time. The Z-Pinch is an approach for simultaneously heating, confining, and compressing plasma by applying an intense, pulsed electrical current which generates a magnetic field. While the simplicity of the Z-Pinch is attractive, it has been plagued by plasma instabilities. MIFTI’s SZP plasma target consists of two components with different atomic numbers and is specifically configured to reduce instabilities. When…


Status: ALUMNI
State: MI
Project Term: -
Program: GENSETS
Award: $3,572,223

MAHLE Powertrain

Advanced Lean Burn Micro-CHP Genset

MAHLE Powertrain with partners at Oak Ridge National Laboratory, Louthan Engineering, Kohler Company, and Intellichoice Energy will design and develop a CHP generator that uses an internal combustion engine with a turbulent jet ignition (TJI) combustion system. Similar to an automotive internal combustion engine, the proposed system follows the same process: the combustion of natural gas fuel creates a force that moves a piston, transferring chemical energy to mechanical energy used in conjunction with a generator to create electricity. The TJI combustion system incorporates a pre-chamber…


Status: ACTIVE
State: MI
Project Term: -
Program: REMEDY
Award: $3,253,088

MAHLE Powertrain

Methane Oxidation Catalysts for Lean-burn Natural Gas Engines

MAHLE Powertrain proposes an aftertreatment package to minimize methane emissions from natural gas-fired lean and ultra-lean burn engines. The package features a methane oxidation catalyst with a novel hydrothermally stable catalyst formulation that significantly increases methane conversion efficiencies under low temperature exhaust conditions. The methane source addressed is methane that “slips” through the engine, unconverted to other species during combustion. The burden falls on the emissions control system to oxidize methane slip; however, in lean and ultra-lean burn engines, the…


Status: ACTIVE
State: FL
Project Term: -
Program: CURIE
Award: $1,580,526

Mainstream Engineering

Improved Volatile and Semi-volatile Radionuclide Off-Gas Management

Mainstream Engineering will research a series of vacuum swing separation unit operations to separate and capture volatile radionuclides from the off-gassing of UNF aqueous reprocessing facility operations. Off-gas management and disposal accounts for roughly 13% of aqueous reprocessing systems’ capital costs and at least 10% of their operating costs for product/waste containers and utilities. The vacuum swing adsorption units researched in this project will contain targeted, specific adsorbents for the removal and concentration of radionuclides to maximize the overall process efficiency,…


Status: ALUMNI
State: HI
Project Term: -
Program: MARINER
Award: $995,978

Makai Ocean Engineering

Performance and Impact of Macroalgae Farming

Makai Ocean Engineering will lead a MARINER Category 3 project to develop tools to simulate the biological and structural performance of offshore macroalgae systems. Macroalgae farming systems will require significant capital and operating costs. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production for profitable operation. Makai's project will result in a hydrodynamic-mechanical model which simulates forces on offshore algae structures from to waves and currents.…


Status: ACTIVE
State: HI
Project Term: -
Program: OPEN 2021
Award: $811,320

Makai Ocean Engineering

Remotely Installed Anchorages for Floating Offshore Wind and Other Offshore Renewables Cost Reduction

The Makai Ocean Engineering team will develop novel mooring and anchoring methods to reduce the costs of offshore renewable energy. Makai will enable grid-scale FOWT and MHK systems to be deployed in areas that would otherwise be inaccessible or too expensive with current mooring and anchoring technologies. At the center of this program is Makai’s Remote Anchoring and MicroPiling (RAMP) system, which can remotely install micropiles on the seafloor. The micropiles enable an anchorage strong enough to secure FOWT or MHK systems, negating the need for large drag embedment anchors, drilled piles…