Novel Technique for Domestic Rare Earth Oxide Separation and Rare Earth Metal Reduction

ARPA-E Project Image

Special Projects
Project Term:
06/21/2021 - 12/20/2022

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

Rare earth metals (REMs) are crucial for a domestic clean energy future, as they are key to several emerging technologies from wind turbines to electric vehicles. Currently, high energy requirements, hazardous waste generation, and the associated costs inhibit domestic commercial viability of rare earth separation and metallization processes, so rare earth material is sent to China for processing. Phoenix Tailings (PT) has developed novel techniques to separate rare earth oxides (REOs) without the use of hazardous chemicals and reduce them to REMs using 35-45% less energy. PT will separate REOs through selective halogenation and use mixed halide salts to reduce them. The result is a new domestic rare earth supply chain that removes cost-preventative energy requirements and environmentally unacceptable solvents.


ARPA-E Program Director:
Dr. Douglas Wicks
Project Contact:
Dr. Thomas Villalon
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: